School Safety Project
lan Atol, Stephen Hung, Hanson Egbert,
Dmitriy Timokhin, Donnie Sanchez
Anu Uppuluri

Overview

The goal of this project is to develop automatic structural classification algorithms
based on a standardized group of school building photos capturing key features of the
Global Library of School Infrastructure (GLOSI) structural taxonomy. By doing so, the
World Bank’s manual classification process can be replaced and thus can save a
significant amount of time spent labeling. Furthermore, a reliable national school
baseline database can be developed more efficiently, in terms of reducing the cost and
time of in-field data collection.

The intended users for this project are the engineers hired by the World Bank to
survey the schools. By using this project, engineers require less manual work (i.e.,
detailed inspections on the ground) and can instead use photos collected by local
students. Another group of possible users is the analysts at the World Bank. Given the
structural classifications, analysts will be able to predict the damages that can occur in
the event of a natural disaster (earthquake, hurricane, tornado, flooding, etc.). By doing
so, they are able to provide information to local governments and guide intervention and
investment plans.

Background and Related Work

Cal Poly conducted a similar project two years ago in Pantoja et al.’s paper “An
Introduction to Deep Learning.” (Pantoja, Behrouzi, and Fabris, 2018) Although this
paper focuses on what makes up a neural network, and their different styles, the paper
implements a type of Convolutional Neural Network, AlexNet, on classifying structural
damage identification. Their data was provided by The Pacific Earthquake Engineering
Research Center. It was labeled for classifications that include:

Scene level (pixel, object, or structural)
Damage condition (yes or no)

Spalling condition (yes or no)

Material type (steel or other)

Collapse state (none, partial, or full)
Component type (beam, column, wall, or other)

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1124&context=aen_fac
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1124&context=aen_fac

e Damage level (none, minor, moderate, or heavy)
e Damage type (none, flexural, shear, or combined)

We believe that our data will be labeled similarly to the data above. Pantoja’s
implementation takes the raw pixel values of a structure’s image as input and outputs a
score for each of the categories listed above. Their algorithm can draw a bounding box
with an accuracy of 77%. Our implementation will not draw a box around the identified
features, but we hope to identify them accurately through other means. Hopefully, we
can achieve the same accuracy as Pantoja’s team, or even better.

Difficulty

We predicted that the difficulty rating for this project would be 7/10.
Communication posed a bit of a problem between us and the World Bank since it was
an international partnership; however, they graciously agreed to video-conference with
us about once a week even though it is not as effective as a face-to-face interchange of
information. Communication within the team and with the DxHub was not a problem
though, as all parties were on campus here at Cal Poly. We were originally planning on
using more images for our training/validation/test data from the World Bank. However, it
has been rather hard for the students and engineers on the field to take enough images
of their respective schools and for the engineers to label them on time. We also had to
consider the pros/cons about the best technologies/techniques to use for the project:
cloud services like AWS (with DxHub providing us with credits), Google Cloud, IBM
Watson, Microsoft Azure vs online notebooks like Jupyter Notebook, Google
Colaboratory, Cocalc; Deep Learning frameworks like Tensorflow/Keras vs PyTorch.
We finally stuck with running our Python training script (aided by other LINUX scripts) -
we converted from the IPython format we tested in on Google Colab and JupyterLab -
on powerful AWS EC2 instances like g4dn.8xlarge and p3.8xlarge. Future developers of
this project may consider using Amazon SageMaker for a fully automated experience.
Other considerations included whether we should incorporate transfer learning and build
upon/customize pre-trained weights from pre-existing models offered by the various
cloud services or whether we should start from scratch, borrowing just the vital elements
from them that are of use to us. Furthermore, an important discussion was whether we
should split up and compete for building/piecing-together the best models for our cause,
or focus on perfecting just a single model. In the end, we believe our estimate of the
difficulty was accurate.

Relevance

In this class, our main goal was to learn about the current developments in
Al/Deep learning with a focus on multi-agent systems. Although this project does not
include a multi-agent system, it does include a state of the art neural network. Since
'Intelligent Agents' is the broader topic of this course and seeking to
understand/implement/better the intelligence/autonomous aspect of an agent is
sometimes more crucial than working on its sensors and actuators, we deem that this
project is apt for the course. Through this project, we learned a lot about building a
production system that can be used to help engineers, apart from honing our machine
learning and API-building skills with packages/platforms like Keras, Pandas, Tensorflow,
Docker, TensorFlow Serving and even certain aspects of Python like array/list splices.
Our goal was to be able to create a smooth transition of knowledge and implementation
from us to the maintainers at the DxHub and World Bank.

Features

This project’s main goal was to produce a model that can, given photos of the
exterior walls of a school, accurately classify the building based on the World Bank’s
Global Library of School Infrastructure taxonomy. The positive effects of this model
have been mentioned in our project overview but are copied below. As helper tools to
accomplish this, we also created a web scraper for the World Bank’s photo repository,
as well as an API to provide convenient access to the model.

The intended users for this project are the engineers hired by the World Bank to
survey the schools. By using our tool, engineers require less manual work (i.e., detailed
inspections on the ground) and can instead use photos collected by local students.
Another group of possible users is the analysts at the World Bank. Given our predicted
structural classifications, analysts will be able to better model the damages that will
occur in the event of a natural disaster (earthquake, hurricane, tornado, flooding, etc.).
By doing so, they are able to provide information to local governments and guide
intervention and investment plans.

Requirements

e Scraper to pull data from the World Bank website
o Make sure this is safe
e ML model/algorithm that is able to classify photos of buildings as a specific
building type with high accuracy
o Code and descriptions of our thought process
o Multiple models
Ability to input new photos into the aforementioned model
Easy access to the model (API)
Be able to access the models predicted output by sending a get request

Evaluation Criteria

Due to the short term timeline of this project, the World Bank did not define any
set of required metrics for success. Since this project is only the first phase of what is
hopefully a long and fruitful project, any measurable success in classifying the World
Bank’s building photos will be useful for the World Bank as a preliminary MVP. We
verified if our scraper retrieved all of the data by asking the World Bank to verify that the
17k photos are all of the labeled photos in their database.

In order to measure the accuracy of our model, we used
training/testing/validation sets for our models. By creating a validation set at the
beginning of the model building process we can remove the necessary bias of model
fitting. In this validation set, we use a simple formula (predicted class == actual
class)/number of classes. This gives us the percent of successful classifications and
gives the end-users an overview of the performance of our model.

Once we have verified that our model is acceptably accurate, we use an API to
give it previously unseen input photos. Our API has reasonable response times and
good documentation. We then use the API and test the model by ensuring the input
photos are properly and accurately classified.

Feature Requirement Evaluation Criteria

Scraper Web scraper for | Encrypt image file to | Visually inspect
World Bank’s photo | protect sensitive data images
repository

ML model/algorithm A model that can, | Well organized and | Accuracy rating
given photos of the | commented code for | from model
exterior walls of a | implementing the model
school, accurately
classify the building
according to the
GLOSI taxonomy

Input new photos Ability to give the | Get images outside of | Ensuring the input
model new photos to | our training set, and test | photos are
classify with our model properly and

accurately
classified.

API An interface with | Be able to access the | Reasonable

which to interact | models predicted output | response times,

programmatically with | by sending a get request | documentation
the model

System Design and Architecture

Our project was to build an ML model to classify images of school buildings to
specific typologies provided by GPSS. Therefore, in order to do this, our system design
is less like an application and more of a description of how we will find the data and the
usages for the model afterward. The project components are described in Figure 1
below.

The ML algorithm, on the other hand, is accessible via an APl provided by
TensorFlow Serving. This allows the Ul team to directly take user input into the app and
then send POST requests to the server and receive the corresponding predictions.

Added typology labels
from World Bank
Excel sheet

World Bank website Scrape images and
connected data

s

ML Model Verification ML Model Training Data Cleaning
L\ ¥
A 4
Deploy w/ API
ML Model via. Tensorflow
Servings

Figure 1: Block Diagram for Project Components

Implementation

To scrape the data from the World Bank website, we initially thought to use the
Beautiful Soup Python library. Unfortunately, due to issues with the architecture of the
website, Beautiful Soup did not meet our needs and we were forced to make a more
manual Python script to scrape the data using the Requests and Urllib libraries. After
scraping the images of the Nepalese schools and some of their labels from the website,
we attached more labels that were provided by the World Bank to these images using
another Python script. These scripts are available on the GitHub repository for
reference. If access to the GitHub is needed, please contact the DxHub.

Adding the extraneous given labels to the scraped images was fairly simple, as
both datasets had building ID columns and School ID columns. This way we can end up
with building level and school level features which should all be useful.

After organizing and cleaning our combined dataset, we applied ML algorithms to
the data and labels to try and predict the Main Structural System, Number of Stories,
and Building Category (per the World Bank Global Library of School Architecture
taxonomy) of a given, unlabelled image. The ML methods we applied are CNNs and
Xception / InceptionResnetV2 model via Tensorflow Keras. Using these models, we use
a method called transfer learning (Brownlee 2019) in order to reduce the time needed to
train our model. Transfer learning is a method where a model that has already been
trained on some data set is used to learn from a new data set rather than starting from
zero knowledge. From this base model, we added-on new layers to be trained on our
new data set.

Finally, for our API, we used TensorFlow Serving, hosted on a Docker instance
inside of an AWS instance that can be accessed remotely. A request sent to the API

with a photo will respond with the results from a pre-trained model. The results from the
APl come in a JSON format with 3 main keys: “Building Category”, “Main Structural
System”, and “Number of Stories”. Each of the values corresponding to those keys is a
list of probabilities. For example, “Building Category” can return something like
[0.989545524, 0.00306758168, 0.00122260209, 0.00616425881] where each element
is a probability. These indices correspond to:

e 0 =LBM: Load-bearing masonry

e 1 =SF: Steel Frame

e 2=TF: Timber Frame

e 3 = RC: Reinforced concrete
So in our example, the building category has a 98.95% chance of being Load-bearing
Masonry. The other labels and their corresponding index are in our Glossary, Appendix
1.

Our main reasons for using TensorFlow Serving are as follows:

1. Our current ML model is using Keras which is TensorFlow’s API for building deep
learning models. Therefore, exporting our model and using it in TensorFlow
Serving was easy and supported with ample documentation.

2. Using TensorFlow Serving with Docker allows for some security in that our model
will only be accessed through a docker image. Furthermore, Docker allows us to
save ‘images’ and easily reproduce the server in case of problems or if anyone
else wants to use our API pipeline.

3. Furthermore, setting up the TensorFlow Serving endpoints was fairly easy
(“Serving a TensorFlow Model | TFX” n.d.) compared to other potential methods.

Ultimately, we found TensorFlow Servings to be fairly easy to use and setup, the docker
container is set up with a simple terminal command and a POST request response is
received within a couple of seconds.

Figure 2: Flow Diagram for ML Model

Validation and Evaluation

To validate and evaluate our results, we review our features list:

https://www.tensorflow.org/tfx/serving/serving_basic

Our web scraper worked as intended and was able to grab the images with their
labels from the provided World Bank site. However, as the project went on and
expectations and goals changed, supplemental data was also provided by the World
Bank themselves. These combined datasets would serve as the training data for our ML
model.

The model itself ended up with 67%, 95%, and 81% accuracy on the respective
categories of main structural system, height range, and building type. While the main
structural system prediction rate is a bit lower than we would have liked, this is a very
complex classification and relies as well on the accuracy of building type prediction. The
ability to input new photos is successful, through the use of our APIl. The API works
quickly and is well documented because of our choice of using TensorFlow Serving.
Due to our use of Docker and AWS in conjunction to host this API, there is an additional
benefit of security and low downtime for those that need reliable access to these
predictions.

To account for the discrepancies between the categorical accuracies attained,
we urge the teams that would follow up on/continue our work to consider that the
amount of labeled data that we could use for training our CNN has been quite dissimilar
for the three categories. This can be attributed to the difficulties in procuring and
labeling said data by the structural engineers on the field, and school children, faculty
and staff of the various Nepalese schools alike.

We initially experienced issues with overfitting and low performance due to one
of the standard pre-trained Keras models (“Applications - Keras Documentation” n.d.)
(“7 Best Models for Image Classification Using Keras” n.d.) we adopted for transfer
learning at the time, namely, VGG19. As we started experimenting with these standard
models, we came to know that our final model performed well when we used Xception
or InceptionResnetV2. But, we hit a roadblock when the test accuracy wouldn’t improve
in spite of training our models for upwards of 25 epochs. It turned out that we had
turned off training/updating the weights of nearly all of the base model layers that we
had borrowed for transfer learning (“Using Pre Trained VGG16 for Another
Classification Task - Issue #4465 - Keras-Team/Keras” n.d.) when we were testing out
our ideas on low-compute-power resources like Google Colab. But once we were given
access to the mind-blowing compute power of AWS S3 and EC2, we could leverage the
complete potential of transfer learning by making a third, then two-thirds and then finally
almost all the layers - borrowed, novel alike - trainable.

The next and hopefully the worst (meaning that there would be little scope for
improvement after fixing it) roadblock of them all that we hit was when our model
wouldn’t go past the 85% mark for one of our top-performing categories - namely, height
range/number of stories. We blasted past this one as well by some more
hyperparameter tuning on our part - we tried monitoring the trends in accuracy across

all 30 epochs of our candidate models involving Xception and InceptionResnetV2, and
found that there was a consistent increase in validation accuracy for up to 6 epochs of
training, followed by fluctuations and then another peak at 26 epochs. But, we chose to
stick with 6 epochs for generating our final “model.h5” file, just because the loss started
fluctuating at 26 epochs, instead of the steady dip we experienced until the 6th. The real
turn around for the performance of our model came when we started tweaking the
learning rate hyperparameter. Perhaps the Stochastic Gradient Descent (SGD)
optimizer could have given us different results, but we picked the Adam optimization
algorithm after looking up popular reviews for classification problems similar to ours.

Finally, to increase the accuracy by almost 10% across all categories, we
switched from the default learning rate of 0.001 to 0.0005, 0.0002 and then to 0.0001.
Although none of the latter three could perform consistently well across all categories,
yet we chose 0.0001 due to the highest overall decrease in loss it provided.
Furthermore, although we were successful in bringing down the loss with the test
dataset to less than 1 for some categories, yet the overall loss could not be brought
down to lower than 1.9. There was almost a tie between Xception and
InceptionResnetV2, which was broken by this Deep Neural Network benchmark paper:
(Bianco et al. 2018). This official Keras documentation was one of our main references
in this process: (“Applications - Keras Documentation” n.d.)

User Feedback

We had ongoing feedback throughout the timeline of our project because we
were in regular contact with our clients. Due to the ever-changing nature of the specifics
of scope and expectations for the project, an overall summary of user feedback is very
difficult. Additionally, due to the outbreak of coronavirus near the end of the quarter, we
were unable to present the project as it was finished to the World Bank team. We hope
that we met their short-term expectations well for the project and that this paper will
additionally help them be able to utilize the model in a more efficient way.

Conclusion

Overall, our project turned out to be successful given the evolving expectations of
the parties involved, for example, with respect to what columns on the file titled

“final_main_columns.csv” (refer to S3 or GitHub) to use as the categories for image
classification, which ones of the categories to classify on first, etc. Our model was able
to classify with 67%, 95%, and 81% accuracy on the respective categories of main
structural system, height range, and building type.

We ended up using a hierarchical architecture for the model. Since ‘Main
Structural System’, is a subcategory of ‘Building Category’ with 12 more categories, it's
clear that the model would perform better on the 4 in ‘Building Category’, as shown in
Figure 2. This led to a jump in accuracy since we used the prediction of ‘Building
Category’ to predict ‘Main Structural System’ in our network. We have an API that is
hosted inside a Docker container in our AWS instance with a good response time. From
a technical perspective, we learned about containerization, implementing and improving
a neural network model, and also about cleaning and processing large amounts of data.
From a less technical perspective, we learned a lot about communication in a corporate
setting. Future work in this project could include implementing the full GLOSI taxonomy
to be classified, as well as classifying structural damage. The app team is working on
building a front-end system to be able to access our model.

Glossary

Appendix 1. Index/Label for ML Model Results

Main Structural system(index, value):
e 0, UCM/URM2: Rubble (or field) stone in mud mortar
1, SFM1: Lightweight gravity steel frame with URM walls
2, TF: Timber frame
3, RC1: Reinforced concrete moment frame with/without in-fill walls that do not
contribute to lateral stiffness
4, UCM/URMBG: Dressed stone in cement mortar
5, UCM/URM7: Rectangular block in cement mortar
6, UCM/URM1: Dry rubble (or field) stone masonry
7, TEM: Lightweight gravity timber frame with URM walls
8, RC2: Reinforced concrete frame with in-fill walls as stiffening element
9, RC3: Reinforced concrete short column frame
10, UCM/URM4: Rectangular block (brick, concrete block) in mud mortar

11, A: Earthen Blocks or compressed stabilized soil blocks in mud mortar
12, SFM2: Lightweight gravity steel frame with RM, CM or precast walls
13, RM: Rectangular block in cement mortar with steel reinforcement

14, RC4: Reinforced concrete combined or dual system

15, CM: Rectangular block in cement mortar with RC confinement

Number of stories(index, num stories)
0,1
1,2
2,3
3,4
4,5
56

Building cat(index, category)
e 0, LBM: Load-bearing masonry
e 1, SF: Steel Frame
o 2 TF: Timber Frame
e 3, RC: Reinforced concrete

References

“7 Best Models for Image Classification Using Keras.” n.d. Accessed March 17, 2020.
https://www.it4nextgen.com/keras-image-classification-models/.

“Applications - Keras Documentation.” n.d. Accessed March 17, 2020a.
https://keras.io/applications/.

“Applications - Keras Documentation.” . n.d. Accessed March 17, 2020b.
https://keras.io/applications/#fine-tune-inceptionv3-on-a-new-set-of-classes.

Bianco, Simone, Remi Cadene, Luigi Celona, and Paolo Napoletano. 2018. “Benchmark
Analysis of Representative Deep Neural Network Architectures.” IEEE Access 6:
64270-77._https://doi.org/10.1109/ACCESS.2018.2877890.

Brownlee, Jason. 2019. “Transfer Learning in Keras with Computer Vision Models.” Machine
Learning Mastery (blog). May 14, 2019.
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-conv
olutional-neural-network-models/.

Pantoja, M., Behrouzi, A., & Fabris, D. (2018). An introduction to deep learning. Concrete
International, 40(9), 35—-41. https://digitalcommons.calpoly.edu/aen_fac/125

“Serving a TensorFlow Model | TFX.” n.d. TensorFlow. Accessed March 17, 2020.

https://www.it4nextgen.com/keras-image-classification-models/
https://keras.io/applications/
https://keras.io/applications/#fine-tune-inceptionv3-on-a-new-set-of-classes
https://doi.org/10.1109/ACCESS.2018.2877890
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/

https://www.tensorflow.org/tfx/serving/serving_basic.

“Using Pre Trained VGG16 for Another Classification Task - Issue #4465 - Keras-Team/Keras.”
n.d. GitHub. Accessed March 17, 2020.
https://github.com/keras-team/keras/issues/4465.

https://www.tensorflow.org/tfx/serving/serving_basic
https://github.com/keras-team/keras/issues/4465

