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Abstract 

The Global Program for Safer Schools (GPSS) at the 

World Bank aims to boost large-scale investments to 

improve the safety and resilience of school infrastructure 

at risk from natural hazards and enhance the quality of 

learning environments for children in vulnerable countries 

around the world. In an effort to better assess which 

schools are most susceptible to damage, our team has 

partnered with the World Bank and the Cal Poly DxHub to 

identify the structural type of school buildings in 

Kyrgyzstan. To do this, we improved upon an existing 

convolutional neural network that performs classifications 

of the school buildings; Additionally, we implemented an 

improved data pipeline for providing school building 

images from ArcGIS to our model.  

 

1. Overview 

For our project, we improved an existing system that 

classifies the structural type of school buildings in under-

developed countries around the world. Our focus was to 
improve the model’s classification accuracy of school 

buildings in Kyrgyzstan, as well as improve the data 

pipeline that the model relies on. 

  

Specifically, the goal of this project was to improve the 

classification accuracy of the 3 current taxonomy 

parameters implemented by the Spring 2020 team, being 

building category (P0), main structural system (P1), and 

height range (P2). Previously, the Keras model took a 

single image as input, and processed each image one at a 

time to classify the school building within the three 

structural categories. The Spring 2020 team was also 

manually importing images for processing, so we set up a 

data pipeline between the ArcGIS online photo repository 

and our model so that the model could learn on new data 

and improve the classification accuracy. We also 

developed improvements for the model’s architecture and 

inputs to improve its accuracy on the target categories. 

  

The intended users for this project are the engineers 

hired by the World Bank to survey the schools. By using 

this project, engineers require less manual work and less 

need of mobilization in the field. Another group of possible 

users is the analysts at the World Bank. Given the 

structural classifications, analysts will be able to predict 

the damages that can occur in the event of natural disasters, 

such as earthquakes, hurricanes, and flooding. By doing so, 

they are able to provide advisory information to local 

governments and provide improved intervention and 

investment plans. 

 

1.1. Background and Related Work  

This project was developed in partnership with the 

World Bank and the Cal Poly DxHub. The project began 

in Spring quarter, with a team that developed the initial ML 

model that we inherited. The model, built on 

InceptionResnetV2, was used to predict 3 building criteria, 

according to the GLOSI taxonomy: “building category”, 

“main structural system”, and “number of stories”. They 

achieved 81%, 67%, and 95% accuracy in these respective 

categories. Our initial goal was to improve these 

accuracies—particularly the first two parameters, building 

category and main structural system. However, we 

discovered in our research that various bugs and 

misinterpretations meant that these accuracies were not 

actually representative of the model’s performance. The 

issues we discovered and our solutions for them are 

documented in later sections of this report. 

 

1.2. Difficulty 

At the beginning of the quarter, we predicted that this 

project would be moderately difficult, due to the model’s 

complex architecture and our team’s lack of machine 

learning experience. Since the goal of our project involved 

making complex, fine-tuning adjustments to existing 

generic base models, it required a lot of time-intensive trial 

and error. Additionally, because many of us did not have 

much experience in TensorFlow or Keras, we also needed 

to simultaneously learn the frameworks, learn how the 

existing codebase worked, and expand and improve upon 

it. Despite that we had an existing code base to start from, 

it was still a challenge to understand the framework 

because of the lack of documentation. 

 

We also anticipated that communication would be a 

challenge, since we were collaborating with people in other 



time zones (including one in Singapore, a 9-hour time 

difference). We addressed this by having flexible meeting 

times and using asynchronous collaboration tools such as 

GitHub repositories. Despite these challenges, we were 

able to make meaningful progress for the project.  

 

2. Requirements 

The first requirement of our project involved improving 

the existing data pipeline by developing a program that 

pulls data (images) from ArcGIS using the ArcGIS API. 

This program would be run on our EC2 instance, where our 

model is stored. This improved the workflow because we 

no longer had to constantly download and import 

thousands of images every time we trained the model on a 

new EC2 instance. The next (and main) requirement of our 

project was to experiment with the ML model to improve 

its classification accuracies, making sure to document our 

code and thought processes along the way. Over the course 

of the quarter we experimented in many different ways, but 

the methods that we found to be most successful were 

sending the input in batches, using a scheduled learning 

rate, and data augmentation. 

 

3. Features 

The features we implemented to fulfill the project 

requirements are outlined in this section. First off, we 

changed the model’s architecture and inputs to improve its 

accuracy on the target categories. We adjusted the model 

so that it took 8 images in parallel (4 facade photos, 4 

diaphragm photos) instead of individual images. We also 

implemented a scheduled learning rate, weighted losses, 

and data augmentation, which had varying degrees of 

success for our model. To improve the existing data 

pipeline, we developed a program to provide convenient 

access to the photos stored on ArcGIS. We downloaded the 

images from the ArcGIS website using their API for 

Python and organized them in a way that our model could 

understand. One of the issues we faced during our project 

was a heavily imbalanced dataset, which led to overfitting. 

To address this issue, we implemented data augmentation 

to increase the number of images in our under-represented 

classes. In doing so, we were able to evenly represent the 

different building classes in our dataset. 

 

4. Evaluation Criteria 

Due to the short-term timeline and experimental nature 

of this project, the World Bank did not define any set of 

required metrics for success. Since this project was still in 

the beginning phases of what is hopefully a long and 

fruitful project, any measurable success in the 

classification of the building photos would be useful for 

the World Bank. 

The main concrete metric of the model’s performance 

that we used is accuracy (the percentage of correct 

predictions out of total predictions). In order to measure 

the accuracy of our model, we used training, testing, and 

validation sets for our model. By creating a validation set, 

we can remove the bias of model fitting. By evaluating the 

validation and testing accuracy (examples that the model 

has not seen), we can determine how well the model will 

be able to generalize to new inputs in the future. 

 

Table 1. Features, Requirements, and Evaluation Criteria 

 

 Feature Requirement Evaluation 

Criteria 
 

API  API that can 

access World 

Bank image 

database 

Transfer 

images from 

ArcGIS into 

EC2 instance 

 

Visually 

inspect 

images 

 

 

ML 

model 

A model that 

can accurately 

classify a 

building given 

the GLOSI 

taxonomy 

 

Well 

organized 

code for 

creating the 

model 

 

 

Accuracy 

rating from 

model on 

training and 

validation 

sets 

 

 

Input 

multiple 

photos 

Ability to give 

the model 

multiple 

photos to 

classify in one 

batch 

 

Combine 

data from 

batch of 

photos into 

component 

that can be 

passed into 

machine 

learning 

model 

 

Ensuring 

the input 

photos are 

properly 

and 

accurately 

classified. 

 

 

 

5.  System Design and Architecture 

One of the primary avenues we explored in an attempt 

to improve the ML model was changing the existing single 

input ML model to a multi-input ML model. This new 

proposed architecture is shown in Figure 1. This 

architecture can handle a variable amount of input photos 

and output a taxonomy string for the chosen taxonomy 

parameters. Having multiple photos being input in parallel 

allowed the model to make better generalizations because 

it had a better understanding and perspective of the 

building as a whole. For a high-level overview of how the 

ML model being trained, see Figure 2. Another objective 

of the project was to create a system for downloading 

images from ArcGIS Online. The data from ArcGIS online 

will be updated with new photos in the future, so the model 

will need to be able to access these new photos on demand. 

To address this, we have created a Python script to 



download the desired photos from ArcGIS online using the 

Python API provided by ArcGIS. The dataflow we have 

created is illustrated in Figure 3. 

 

Figure 1: Block Diagram for Classification Architecture 

 

 

 
 

 

Figure 2: Model Training and Learning High-Level Block 

Diagram 

 

 
 

Figure 3: Data Flow inside EC2 Instance 

 

 
 

6. Implementation 

The code for our project was written in Python 3. 

Images and image metadata are read and manipulated 

using standard Python data science libraries, including 

OpenCV, NumPy, Pillow, Matplotlib, and Pandas. 

Additionally, we used the ArcGIS API for Python in order 

to download images to our dataset, in a specified format.  

 

To perform our image classification, we used the 

machine learning framework Keras with a TensorFlow 

(version 2.2) backend. These tools are standard when it 

comes to image classification and have worked well for our 

project.  

 

We are using GitHub as our version control system and 

most of us are using Visual Studio Code as our IDE. We 

were each provided with an AWS login so that we could 

initiate an EC2 server instance, allowing us to connect to 

this server and run the model with all of the input data on 

our local machines. We used g4dn.12xlarge instances, 

which have 4 powerful GPUs, to train our models. 

 

6.1. Data Acquisition 

In order to download images for our dataset, we used 

the ArcGIS API for Python. This API allowed us to 

interface with our database of school building images in 

the country of Kyrgyzstan. Using each school’s Global ID, 

we were able to make individual API calls for each 

building. We would then extract the images from the 

response body of these calls and organize them into a 

folder structure that our model could understand. 

 

6.2. Data Preprocessing 

Once we have downloaded the images, we are ready to 

load them into our model. Because loading all images at 

once is too memory intensive, we utilized the data 

generator created by previous quarters’ teams to load 

images on demand. A key improvement we made in this 

area is that addition of data augmentation.  

 

Data augmentation is the use of methods such as random 

cropping, flipping, and addition of noise to create images 

that are visually similar, but are different enough that they 

might appear as different images to the model. This is 

primarily used to force the model to be able to generalize 

well, instead of memorizing the training dataset. However, 

we further utilized data augmentation to somewhat correct 

for data imbalances in the classes, by augmenting building 

images that belonged to a rare class many more times than 

building images from common classes. Specifically, we 

augmented a number of times inversely proportional to the 



frequency of each class (capped at 30 augmentations).  

 

This resulted in good improvements in the data 

imbalances, as can be seen in the following table: 

 

 

Table 2: Top three most common classes in each  

category, by their percentage share of the dataset 

 

Category Unaugmented Augmented 

P0  89.7, 6.5, 2.5 
 

67.9, 15.6, 10.8 

 

P1  51.6, 21.5, 9.2 

 

32.9, 13.7, 12.9 

 

 

P2 67.8, 25.1, 6.9 

 

66.8, 22.2, 10.2 

 

 

Although it would be possible to achieve perfect parity 

in the dataset, it would result in a massive increase in the 

size of the dataset, which would be too computationally 

expensive unless we resorted to deleting images from 

overrepresented classes. Additionally, because images 

might belong to a rare class in P0 but a common class in 

P2, for example, it is difficult to achieve perfect balance. 

Thus, our method balances the need for imbalance-

compensating augmentation against the speed and memory 

pitfalls of an over-complex augmentation method. Further 

methods to address imbalanced data are discussed in later 

sections. 

 

6.3. Model Architecture and Training 

1Figure 4: Main Model Architecture with Xception base 

 

 
 

The main improvement we made to the model’s 

architecture was adjusting the model to take multiple 

photos in parallel. The model now receives 8 photos in 

total, 4 building side photos and 4 diaphragm photos. We 

also experimented with the InceptionResnetV2, Xception, 

and custom models as the base model architecture.  

We run each photo through the base model and group 

them into building side images and diaphragm images. 

 
1 Model Architecture, from Prototypes and Implementation 

From there we learn from each output and combine them 

into one layer for side images and one for diaphragm 

images. P2 (building height range) is related only to the 

building side photos, and thus we learn this output directly 

from those images. P0 and P1 are learned from a further 

combination of the side and diaphragm layers. Because 

class P1 is related to P0, P1 is learned from the 

combination of the regular output and P0’s output. P3 and 

P4 are also output by the model, though we are not 

focusing on those categories yet, so they do not contribute 

to the loss. 

 

Another change we implemented, to address the 

imbalanced dataset, was the optional use of a weighted 

loss. This loss works by weighting the loss of the model's 

prediction in each category inverse-proportionally to how 

common the true class is in that category. For example, if 

90% of the P0 labels were Class A while only 10% of the 

labels were Class B, the loss (i.e., the penalty for a wrong 

prediction) for Class B examples would be 10x that for 

class A. Thus, the model has to focus on each class the 

same amount, regardless of the number of examples in it, 

in order to minimize the loss. This change actually 

decreased the model's accuracy, though this is to be 

expected, since if the model is focusing less on very 

common classes, it will get them wrong more often, and 

thus the total number of inaccurate predictions increases. 

However, we believe the model is learning more useful and 

valuable predictions, because it has to actually learn the 

differences between classes instead of guessing the most 

common one each time. 

 

6.4. Obstacles and Implementation Issues 

The project has posed some large obstacles that took 

some time to overcome. Most of us had no prior experience 

with artificial intelligence or machine learning so it has 

taken time for all of us to get up to speed. Additionally, it 

took time to learn how to use the ArcGIS API for Python; 

Once we learned how to use it, we were able to download 

images for our dataset in the correct format. The codebase 

that we were given was poorly documented and tested in 

some areas, leading to confusion and frustration. One 

notable instance of this was with our image loading 

function. The previous group’s implementation took the 

input photos and heavily distorted them when resizing to 

the point of being unrecognizable as actual buildings 

before putting them into the model. We only realized this 

recently when we were trying to implement data 

augmentation. Fixing this problem alone increased the 

accuracy of our model by an average of 7% in each 

category. 

Another notable constraint was memory. When we tried 

experimenting with batch size, we ran into memory 

https://docs.google.com/document/d/1x5cmedRSyZchZbzcRgE1Rz7LN4gMFuMVmAL-TXn1StY/edit?usp=sharing


allocation and space issues. This was because each 

individual sample of data was actually 8 600x800 pixel 

images. With some experimentation, we determined the 

largest batch size we can use is 4, which actually 

corresponds to 32 images per batch. 

 

Perhaps the largest issue within trying to improve the 

model accuracy was the heavily imbalanced data set. In 

some of the categories, the most prevalent class consisted 

of about 90% of the dataset, which led to the model 

overfitting and struggling to classify rarer building types. 

In other datasets, the most common classification consisted 

of about half of the dataset. 

 

 

7. Validation and Evaluation 

In order to measure the accuracy of our model, we used 

training, testing, and validation sets for our models. By 

creating a validation set at the beginning of the model 

building process we can evaluate how much our model is 

overfitting during training, by seeing the difference 

between the training and test losses and accuracies. The 

main criterion we used for evaluation is accuracy. This 

gives us the percent of successful classifications and gives 

the end-users an overview of the performance of our 

model. 

 

8. Conclusions 

At the beginning of the quarter, our team was tasked 

with improving an existing system that classifies the 

structural integrity of school buildings in under-developed 

countries around the world. Our focus was to improve the 

model’s classification accuracy of school buildings in 

Kyrgyzstan, as well as improve the data pipeline that the 

model relies on. Throughout the quarter, we encountered a 

number of interesting challenges. These challenges 

included sparse documentation, broken image input in the 

model, and the fact that most members of the team were 

beginners to artificial intelligence and neural networks. 

Despite these challenges, we were able to meet most of the 

goals we set out to accomplish from the beginning; These 

accomplishments include an improved data pipeline, fixed 

image input, and improved classification for the 

parameters P0 (building category) and P2 (building height 

range).  

 

The biggest thing we learned was a dual lesson in 

software engineering and AI: For software engineering, 

you must always verify the codebase you are given actually 

works; for AI, make sure you know your data well. The 

code we inherited boasted an accuracy of 81%, 67%, and 

95% in the three categories we are focused on predicting. 

However, we discovered after a while that the dataset was 

severely imbalanced, so much so that the model was 

simply guessing the most common class every time to 

achieve the stated accuracies. Later in the quarter, while 

implementing data augmentation, we discovered that there 

was also a bug in the way image data was being loaded into 

the model, which distorted the images beyond all 

recognition.  

 

The majority of our work this quarter went toward 

addressing imbalances and incongruencies in the data, 

instead of building novel ML models, as well as 

completing the development of the multi-input model 

architecture. The following is a summary of our 

achievements: 

• Implemented ArcGIS API 

• Created multi-input model 

• Fixed image loading functions 

• Improved the learning rate scheduling and 

other hyperparameter tuning 

• Implemented data augmentation 

• Added weighted loss 

 

8.1. Future Work 

In the future, there are various ways the system could 

potentially be improved. Some possible features that we 

identified are the ability to use different machine learning 

models to improve classification of images. Also, 

additional image augmentation types could be considered, 

such as contrast and brightness. Other possible fields of 

experimentation that could be looked into are using 

different base architectures, along with adjusting the 

number of parameters or the depth of the model. 
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