
Making Schools Safer and Resilient at Scale in Kyrgyzstan

Martin Jiang, Finlay Piroth, Eric Newcomer, Julian Rice, Sveta Selvan, Ziyi Wang, Steven Le

California Polytechnic State University, San Luis Obispo, USA

Abstract

The Global Program for Safer Schools (GPSS) at the

World Bank aims to boost large-scale investments to

improve the safety and resilience of school infrastructure

at risk from natural hazards and enhance the quality of

learning environments for children in vulnerable countries

around the world. In an effort to better assess which

schools are most susceptible to damage, our team has

partnered with the World Bank and the Cal Poly DxHub to

identify the structural type of school buildings in

Kyrgyzstan. To do this, we improved upon an existing

convolutional neural network that performs classifications

of the school buildings; Additionally, we implemented an

improved data pipeline for providing school building

images from ArcGIS to our model.

1. Overview

For our project, we improved an existing system that

classifies the structural type of school buildings in under-

developed countries around the world. Our focus was to
improve the model’s classification accuracy of school

buildings in Kyrgyzstan, as well as improve the data

pipeline that the model relies on.

Specifically, the goal of this project was to improve the

classification accuracy of the 3 current taxonomy

parameters implemented by the Spring 2020 team, being

building category (P0), main structural system (P1), and

height range (P2). Previously, the Keras model took a

single image as input, and processed each image one at a

time to classify the school building within the three

structural categories. The Spring 2020 team was also

manually importing images for processing, so we set up a

data pipeline between the ArcGIS online photo repository

and our model so that the model could learn on new data

and improve the classification accuracy. We also

developed improvements for the model’s architecture and

inputs to improve its accuracy on the target categories.

The intended users for this project are the engineers

hired by the World Bank to survey the schools. By using

this project, engineers require less manual work and less

need of mobilization in the field. Another group of possible

users is the analysts at the World Bank. Given the

structural classifications, analysts will be able to predict

the damages that can occur in the event of natural disasters,

such as earthquakes, hurricanes, and flooding. By doing so,

they are able to provide advisory information to local

governments and provide improved intervention and

investment plans.

1.1. Background and Related Work

This project was developed in partnership with the

World Bank and the Cal Poly DxHub. The project began

in Spring quarter, with a team that developed the initial ML

model that we inherited. The model, built on

InceptionResnetV2, was used to predict 3 building criteria,

according to the GLOSI taxonomy: “building category”,

“main structural system”, and “number of stories”. They

achieved 81%, 67%, and 95% accuracy in these respective

categories. Our initial goal was to improve these

accuracies—particularly the first two parameters, building

category and main structural system. However, we

discovered in our research that various bugs and

misinterpretations meant that these accuracies were not

actually representative of the model’s performance. The

issues we discovered and our solutions for them are

documented in later sections of this report.

1.2. Difficulty

At the beginning of the quarter, we predicted that this

project would be moderately difficult, due to the model’s

complex architecture and our team’s lack of machine

learning experience. Since the goal of our project involved

making complex, fine-tuning adjustments to existing

generic base models, it required a lot of time-intensive trial

and error. Additionally, because many of us did not have

much experience in TensorFlow or Keras, we also needed

to simultaneously learn the frameworks, learn how the

existing codebase worked, and expand and improve upon

it. Despite that we had an existing code base to start from,

it was still a challenge to understand the framework

because of the lack of documentation.

We also anticipated that communication would be a

challenge, since we were collaborating with people in other

time zones (including one in Singapore, a 9-hour time

difference). We addressed this by having flexible meeting

times and using asynchronous collaboration tools such as

GitHub repositories. Despite these challenges, we were

able to make meaningful progress for the project.

2. Requirements

The first requirement of our project involved improving

the existing data pipeline by developing a program that

pulls data (images) from ArcGIS using the ArcGIS API.

This program would be run on our EC2 instance, where our

model is stored. This improved the workflow because we

no longer had to constantly download and import

thousands of images every time we trained the model on a

new EC2 instance. The next (and main) requirement of our

project was to experiment with the ML model to improve

its classification accuracies, making sure to document our

code and thought processes along the way. Over the course

of the quarter we experimented in many different ways, but

the methods that we found to be most successful were

sending the input in batches, using a scheduled learning

rate, and data augmentation.

3. Features

The features we implemented to fulfill the project

requirements are outlined in this section. First off, we

changed the model’s architecture and inputs to improve its

accuracy on the target categories. We adjusted the model

so that it took 8 images in parallel (4 facade photos, 4

diaphragm photos) instead of individual images. We also

implemented a scheduled learning rate, weighted losses,

and data augmentation, which had varying degrees of

success for our model. To improve the existing data

pipeline, we developed a program to provide convenient

access to the photos stored on ArcGIS. We downloaded the

images from the ArcGIS website using their API for

Python and organized them in a way that our model could

understand. One of the issues we faced during our project

was a heavily imbalanced dataset, which led to overfitting.

To address this issue, we implemented data augmentation

to increase the number of images in our under-represented

classes. In doing so, we were able to evenly represent the

different building classes in our dataset.

4. Evaluation Criteria

Due to the short-term timeline and experimental nature

of this project, the World Bank did not define any set of

required metrics for success. Since this project was still in

the beginning phases of what is hopefully a long and

fruitful project, any measurable success in the

classification of the building photos would be useful for

the World Bank.

The main concrete metric of the model’s performance

that we used is accuracy (the percentage of correct

predictions out of total predictions). In order to measure

the accuracy of our model, we used training, testing, and

validation sets for our model. By creating a validation set,

we can remove the bias of model fitting. By evaluating the

validation and testing accuracy (examples that the model

has not seen), we can determine how well the model will

be able to generalize to new inputs in the future.

Table 1. Features, Requirements, and Evaluation Criteria

 Feature Requirement Evaluation

Criteria

API API that can

access World

Bank image

database

Transfer

images from

ArcGIS into

EC2 instance

Visually

inspect

images

ML

model

A model that

can accurately

classify a

building given

the GLOSI

taxonomy

Well

organized

code for

creating the

model

Accuracy

rating from

model on

training and

validation

sets

Input

multiple

photos

Ability to give

the model

multiple

photos to

classify in one

batch

Combine

data from

batch of

photos into

component

that can be

passed into

machine

learning

model

Ensuring

the input

photos are

properly

and

accurately

classified.

5. System Design and Architecture

One of the primary avenues we explored in an attempt

to improve the ML model was changing the existing single

input ML model to a multi-input ML model. This new

proposed architecture is shown in Figure 1. This

architecture can handle a variable amount of input photos

and output a taxonomy string for the chosen taxonomy

parameters. Having multiple photos being input in parallel

allowed the model to make better generalizations because

it had a better understanding and perspective of the

building as a whole. For a high-level overview of how the

ML model being trained, see Figure 2. Another objective

of the project was to create a system for downloading

images from ArcGIS Online. The data from ArcGIS online

will be updated with new photos in the future, so the model

will need to be able to access these new photos on demand.

To address this, we have created a Python script to

download the desired photos from ArcGIS online using the

Python API provided by ArcGIS. The dataflow we have

created is illustrated in Figure 3.

Figure 1: Block Diagram for Classification Architecture

Figure 2: Model Training and Learning High-Level Block

Diagram

Figure 3: Data Flow inside EC2 Instance

6. Implementation

The code for our project was written in Python 3.

Images and image metadata are read and manipulated

using standard Python data science libraries, including

OpenCV, NumPy, Pillow, Matplotlib, and Pandas.

Additionally, we used the ArcGIS API for Python in order

to download images to our dataset, in a specified format.

To perform our image classification, we used the

machine learning framework Keras with a TensorFlow

(version 2.2) backend. These tools are standard when it

comes to image classification and have worked well for our

project.

We are using GitHub as our version control system and

most of us are using Visual Studio Code as our IDE. We

were each provided with an AWS login so that we could

initiate an EC2 server instance, allowing us to connect to

this server and run the model with all of the input data on

our local machines. We used g4dn.12xlarge instances,

which have 4 powerful GPUs, to train our models.

6.1. Data Acquisition

In order to download images for our dataset, we used

the ArcGIS API for Python. This API allowed us to

interface with our database of school building images in

the country of Kyrgyzstan. Using each school’s Global ID,

we were able to make individual API calls for each

building. We would then extract the images from the

response body of these calls and organize them into a

folder structure that our model could understand.

6.2. Data Preprocessing

Once we have downloaded the images, we are ready to

load them into our model. Because loading all images at

once is too memory intensive, we utilized the data

generator created by previous quarters’ teams to load

images on demand. A key improvement we made in this

area is that addition of data augmentation.

Data augmentation is the use of methods such as random

cropping, flipping, and addition of noise to create images

that are visually similar, but are different enough that they

might appear as different images to the model. This is

primarily used to force the model to be able to generalize

well, instead of memorizing the training dataset. However,

we further utilized data augmentation to somewhat correct

for data imbalances in the classes, by augmenting building

images that belonged to a rare class many more times than

building images from common classes. Specifically, we

augmented a number of times inversely proportional to the

frequency of each class (capped at 30 augmentations).

This resulted in good improvements in the data

imbalances, as can be seen in the following table:

Table 2: Top three most common classes in each

category, by their percentage share of the dataset

Category Unaugmented Augmented

P0 89.7, 6.5, 2.5

67.9, 15.6, 10.8

P1 51.6, 21.5, 9.2

32.9, 13.7, 12.9

P2 67.8, 25.1, 6.9

66.8, 22.2, 10.2

Although it would be possible to achieve perfect parity

in the dataset, it would result in a massive increase in the

size of the dataset, which would be too computationally

expensive unless we resorted to deleting images from

overrepresented classes. Additionally, because images

might belong to a rare class in P0 but a common class in

P2, for example, it is difficult to achieve perfect balance.

Thus, our method balances the need for imbalance-

compensating augmentation against the speed and memory

pitfalls of an over-complex augmentation method. Further

methods to address imbalanced data are discussed in later

sections.

6.3. Model Architecture and Training

1Figure 4: Main Model Architecture with Xception base

The main improvement we made to the model’s

architecture was adjusting the model to take multiple

photos in parallel. The model now receives 8 photos in

total, 4 building side photos and 4 diaphragm photos. We

also experimented with the InceptionResnetV2, Xception,

and custom models as the base model architecture.

We run each photo through the base model and group

them into building side images and diaphragm images.

1 Model Architecture, from Prototypes and Implementation

From there we learn from each output and combine them

into one layer for side images and one for diaphragm

images. P2 (building height range) is related only to the

building side photos, and thus we learn this output directly

from those images. P0 and P1 are learned from a further

combination of the side and diaphragm layers. Because

class P1 is related to P0, P1 is learned from the

combination of the regular output and P0’s output. P3 and

P4 are also output by the model, though we are not

focusing on those categories yet, so they do not contribute

to the loss.

Another change we implemented, to address the

imbalanced dataset, was the optional use of a weighted

loss. This loss works by weighting the loss of the model's

prediction in each category inverse-proportionally to how

common the true class is in that category. For example, if

90% of the P0 labels were Class A while only 10% of the

labels were Class B, the loss (i.e., the penalty for a wrong

prediction) for Class B examples would be 10x that for

class A. Thus, the model has to focus on each class the

same amount, regardless of the number of examples in it,

in order to minimize the loss. This change actually

decreased the model's accuracy, though this is to be

expected, since if the model is focusing less on very

common classes, it will get them wrong more often, and

thus the total number of inaccurate predictions increases.

However, we believe the model is learning more useful and

valuable predictions, because it has to actually learn the

differences between classes instead of guessing the most

common one each time.

6.4. Obstacles and Implementation Issues

The project has posed some large obstacles that took

some time to overcome. Most of us had no prior experience

with artificial intelligence or machine learning so it has

taken time for all of us to get up to speed. Additionally, it

took time to learn how to use the ArcGIS API for Python;

Once we learned how to use it, we were able to download

images for our dataset in the correct format. The codebase

that we were given was poorly documented and tested in

some areas, leading to confusion and frustration. One

notable instance of this was with our image loading

function. The previous group’s implementation took the

input photos and heavily distorted them when resizing to

the point of being unrecognizable as actual buildings

before putting them into the model. We only realized this

recently when we were trying to implement data

augmentation. Fixing this problem alone increased the

accuracy of our model by an average of 7% in each

category.

Another notable constraint was memory. When we tried

experimenting with batch size, we ran into memory

https://docs.google.com/document/d/1x5cmedRSyZchZbzcRgE1Rz7LN4gMFuMVmAL-TXn1StY/edit?usp=sharing

allocation and space issues. This was because each

individual sample of data was actually 8 600x800 pixel

images. With some experimentation, we determined the

largest batch size we can use is 4, which actually

corresponds to 32 images per batch.

Perhaps the largest issue within trying to improve the

model accuracy was the heavily imbalanced data set. In

some of the categories, the most prevalent class consisted

of about 90% of the dataset, which led to the model

overfitting and struggling to classify rarer building types.

In other datasets, the most common classification consisted

of about half of the dataset.

7. Validation and Evaluation

In order to measure the accuracy of our model, we used

training, testing, and validation sets for our models. By

creating a validation set at the beginning of the model

building process we can evaluate how much our model is

overfitting during training, by seeing the difference

between the training and test losses and accuracies. The

main criterion we used for evaluation is accuracy. This

gives us the percent of successful classifications and gives

the end-users an overview of the performance of our

model.

8. Conclusions

At the beginning of the quarter, our team was tasked

with improving an existing system that classifies the

structural integrity of school buildings in under-developed

countries around the world. Our focus was to improve the

model’s classification accuracy of school buildings in

Kyrgyzstan, as well as improve the data pipeline that the

model relies on. Throughout the quarter, we encountered a

number of interesting challenges. These challenges

included sparse documentation, broken image input in the

model, and the fact that most members of the team were

beginners to artificial intelligence and neural networks.

Despite these challenges, we were able to meet most of the

goals we set out to accomplish from the beginning; These

accomplishments include an improved data pipeline, fixed

image input, and improved classification for the

parameters P0 (building category) and P2 (building height

range).

The biggest thing we learned was a dual lesson in

software engineering and AI: For software engineering,

you must always verify the codebase you are given actually

works; for AI, make sure you know your data well. The

code we inherited boasted an accuracy of 81%, 67%, and

95% in the three categories we are focused on predicting.

However, we discovered after a while that the dataset was

severely imbalanced, so much so that the model was

simply guessing the most common class every time to

achieve the stated accuracies. Later in the quarter, while

implementing data augmentation, we discovered that there

was also a bug in the way image data was being loaded into

the model, which distorted the images beyond all

recognition.

The majority of our work this quarter went toward

addressing imbalances and incongruencies in the data,

instead of building novel ML models, as well as

completing the development of the multi-input model

architecture. The following is a summary of our

achievements:

• Implemented ArcGIS API

• Created multi-input model

• Fixed image loading functions

• Improved the learning rate scheduling and

other hyperparameter tuning

• Implemented data augmentation

• Added weighted loss

8.1. Future Work

In the future, there are various ways the system could

potentially be improved. Some possible features that we

identified are the ability to use different machine learning

models to improve classification of images. Also,

additional image augmentation types could be considered,

such as contrast and brightness. Other possible fields of

experimentation that could be looked into are using

different base architectures, along with adjusting the

number of parameters or the depth of the model.

Acknowledgments

Our team would like to thank Jingzhe Wu from the

World Bank and Elise St. John from the Cal Poly DxHub

for all of their guidance and support throughout this

project. We would also like to thank Professor Kurfess for

pairing our team with the Global Program for Safer

Schools (GPSS) initiative and for his guidance on this

project.

References

[1] “GLOSI Taxonomy Guide,” GPSS – Global Program for

Safer Schools, Oct. 2019.

[2] “Data Augmentation | TensorFlow Core,” TensorFlow.

https://www.tensorflow.org/tutorials/images/data_augmenta

tion.

[3] Gandhi, Arun. “Data Augmentation: How to Use Deep

Learning When You Have Limited Data.” AI & Machine

Learning Blog, AI & Machine Learning Blog, 6 Aug.

2019, nanonets.com/blog/data-augmentation-how-to-use-

deep-learning-when-you-have-limited-data-part-2/.

