

School Safety Project Document
Alberto Rodriguez, Theo Watkins, Lemar Popal, Joshua Frederick, Caleb Watts, Donald

Sanchez, Justin Evans, Weston Montgomery, Sherry Lin, Maxim Korolkov, Nick Schnorr, Jack
Pietrok

Computer Science Department, Cal Poly San Luis Obispo

CSC 570-02: Deep Learning and Knowledge Graphs

Professor Franz Kurfess, PhD

March 16, 2021

Abstract
In rural areas of Nepal and surrounding countries, earthquakes are common and often deadly.
The World Bank has been collecting data over the past decade on school buildings in these
areas in order to evaluate their structural integrity and determine the risk earthquakes pose to
students in school. Originally the World Bank manually classified the data by studying
photographs of the buildings and reporting structural features and overall integrity. Recently
they have been attempting to replace this system with an automatic classifier which leverages
computer vision techniques. This project attempts to improve the state of the World Bank’s
current automatic classifier by gathering additional training data from previously unused World
Bank sources. This data is used to create a binary classifier that will work to classify the
buildings that are input to the Global Library of School Infrastructure (GLOSI). In order to
validate the results from this new binary classifier the School Safety team has created scripts
that print out the accuracy, precision and F score of the model. This along with the GradCam
platform will allow for better training in future scenarios.

Introduction, Background, and Related Work

Introduction
The goal of this project is to capture key features of the Global Library of School Infrastructure
(GLOSI) structural typologies [1], by expanding a deep learning classification system that
integrates school building photographs. By doing so, we hope to improve upon The World
Bank's current manual classification method by supplementing or replacing it with an automatic
system. Use of this system can reduce the cost and time of in-field data collection, and it will
help promote creation of a reliable school baseline database.

To complete this task, we use deep learning to create a more robust image classification system
that can use images taken in the field and provide classification of the buildings based on
previous classifications. Along with this improvement to the GLOSI, we will also be writing up a
best practices document of the type of images and number of images that would be optimal to
submit to the platform. This would allow more basic users rather than just trained structural
engineers to upload and submit data to the GLOSI platform. The World Bank and governments
would then be able to get a better understanding of the risks to their school infrastructure.

Background & Related Work
This project has been worked on by multiple Cal Poly groups in previous quarters, in
collaboration with the World Bank and Cal Poly DxHub. Previous teams have built a baseline
ML model, built on InceptionResnetV2, which was used to predict three building criteria: building
category, main structural system, and building height. They obtained accuracies of 81%, 67%,
and 95% in the respective categories [2]. In addition, some work has been done to improve the
training data pipeline, as well as improve the ML model using data augmentation and multiple

input capability. Other work in Image classification has been conducted in many other fields
such as medical research and product classification which can be altered to look at building
safety and architecture [3]. Also the use of Knowledge graphs has been used to further refine
image classification providing better accuracy [4].

System Design
The overall project is comprised of the following components: data preprocessing, data pipeline,
logic tree with binary classifications (model experiment 1), model performance evaluator, heat
map (model experiment 2), data augmentation improvement (model experiment 3), and model
fine tuning (model experiment 4). Our team is composed of two sub-teams that will work
distributedly across all seven components of the project. The ultimate goal of this project is to
create an ML system which can classify school site data (building images), so the World Bank
and local governments can make meaningful policy decisions based on quantitative evidence.

Functional Components
Data Preprocessing
Previous teams have already scraped a World Bank website for the front image of every
building in Kyrgyz and Nepal. The sponsor requested our teams to scrape the remaining images
of each Nepal building. There are roughly 8000 buildings with more than eight images per
building. This system interfaces with the OneDrive as the images must be uploaded here.

Data Pipeline
Once all the required images were uploaded to OneDrive and the full dataset was assembled
there, we set up a data pipeline to access that dataset for training and testing of our ML models.
This involved us using an API to pull data to AWS where our training and testing was
performed. The World Bank has not specified if they need this to be accessible for the other
services, so this was only used internally for training.

Logic Tree with Binary Classifications
The previous classifier model takes in a group of eight photos at a time, and it outputs the result
to a concatenated string describing the structural or functional features of the building. Our goal
was to adjust the classification approach and simplify the previous one to a binary decision tree
model. We used separate models to classify binary aspects of a building, such as material type
and building height. Then, these properties were used to determine the overall building
category, based on a predefined logic table.

Model Performance Evaluator
This component measures the performance of the classification models by calculating accuracy,
precision, recall, F1 score, and area under the curve. It takes in the classifications on the testing
data made with the model and compares them to the classifications entered manually. Some of
these measurements are built into frameworks like Keras, but we also built a script that used

scikit learn metrics to evaluate these parameters..

Heat Map
Researchers from Georgia Tech have created a program called “Grad-CAM” which uses deep
networks and gradient-based localization to visually represent distinguishable features using
“heat maps”. Our team referenced the research and modified the publicly available Grad-CAM
code in order to generate a “heat map” which can distinguish different aspects of the building.
The original Grad-CAM software is able to distinguish cats and dogs in the same image; for our
purposes, we needed to distinguish components such as building stories, columns, and
windows. This technology allows us to determine if our binary classifiers are converging on
aspects of a building that are relevant to the question.

Improve Data Augmentation
We primarily used Keras for data augmentation. During the model training stage, we specified
various data augmentations as images are passed to the model. Some useful augmentations
included zoom, rotate, brightness adjustment, horizontal flip, and shear. Some other common
augmentations are not useful in the context of images of school buildings, like vertical flips,
because images aren’t taken upside down. Since the domain was user taken images of schools,
some augmentations that represent user error or normal user variation, such as noise injection
could prove beneficial. These augmentations significantly increase the diversity of images
available for training models, without actually collecting new images, and make class
proportions more balanced. Furthermore, the model will be able to generalize more (i.e. not
overfit) and should perform better on test data.

Fine Tuning Model
Fine tuning the model could easily be done with AWS Sagemaker. Sagemaker iteratively tunes
the hyperparameters of a neural network to improve performance. Additionally, Keras will allow
us to alter parameters like the learning rate, loss function, batch size, and number of epochs.
Choosing the correct values or functions for these parameters can significantly impact the
accuracy of the system. Through research and experimentation we hope to find the ideal
values for these parameters with our newly augmented model and data.

Figure 1:​ High-level System UML Diagram

Figure 2:​ Decision Tree Training Model

APIs and libraries
Data Pipeline
OneDrive developer tools: ​https://github.com/OneDrive/onedrive-sdk-python
This API was used to automate downloading images into AWS for training and testing purposes.
Libraries used: Urllib, pandas

Binary classification model
Libraries used: Tensorflow, Keras, pandas, sklearn, numpy
These are the most common libraries for any machine learning related tasks. Tensorflow and
Keras were used for model architecture, training and testing. Pandas was used for accessing
and formatting the provided labels and classes. Sklearn is used for preparing data for training
and testing, for example performing data splits. Numpy is used for some general data
processing.

Heat Map
Libraries used: OpenCV
Same ones used for binary classification models with the addition of opencv for image
formatting.
Github Repository: ​https://github.com/ramprs/grad-cam/
Grad-CAM Demo: ​https://www.youtube.com/watch?v=COjUB9Izk6E&feature=youtu.be

Performance metrics
All the required metrics can be accessed from Tensorflow or sklearn and these libraries allow for
the definition of new metrics if need be.

Improve Data Augmentation
We used Keras, an open-source library that provides a Python interface for artificial neural
networks and makes it easy to create, train, and evaluate models. It is built on top of the
Tensorflow library.

Fine Tuning Model
Our team suggests using AWS SageMaker to perform the final model tuning. Given that our
project is deployed in the AWS ecosystem, SageMaker is a natural decision as it will integrate
seamlessly with the other components of the system. We never used SageMaker, but suggest
its use in the future.

Knowledge representation issues
The main knowledge representation issue that is apparent to us right now is how the
performance of the binary classification model on the multiclass based dataset. Using multiple
binary classifiers may be less accurate at categorizing building-types overall, and could
introduce unwanted complexity. We monitor model accuracy using the various evaluation
metrics described to make sure this issue is addressed.

https://github.com/OneDrive/onedrive-sdk-python
https://github.com/ramprs/grad-cam/
https://www.youtube.com/watch?v=COjUB9Izk6E&feature=youtu.be

Implementation Details
Our system consists of various main components working independently, namely, we have
binary classification models, an algorithm for highlighting important features, and a web scraper
that gathers the data used for our algorithms. Below we describe the technologies that were
used to create these components as well as some of the challenges we have faced while
building them.

Technologies, Tools, Languages, Development Environments
All of the components in our system were hosted on AWS services. Each component utilized
different technologies within the AWS suite, each of which are noted below.

Binary Classifier
Our binary classifier was adapted from the previous group’s model and uses Python3’s
tensorflow packages. In particular, models are defined using the keras frontend for tensorflow.
The model is trained from a keras data generator pipeline that performs the necessary
preprocessing and augmentation of image data.

Grad-CAM
Another component that our system includes Grad-CAM which is an algorithm that is able to
produce “visual explanations” for Convolutional Neural Networks (CNN) [5]. The original
Grad-CAM system is written in the Lua programming language and uses Caffe deep learning
framework as a way of inputting the CNN [6]. However, since our classification models are
written in Keras we are using a Keras implementation of the Grad-CAM [7].

Data Augmentation
We used Python’s Keras library for data augmentation. Keras was a great choice for data
augmentation for three reasons. (1) The convolutional neural network model was already written
using Keras, so we did not have to learn/include a new library to the code, (2) it provided the
features we wanted natively, and (3) the images were randomly (with some constraints)

augmented in memory before being passed to the model, eliminating the need to save
augmented images to disk, which would have made the size of the dataset much larger.

Web Scraping
For web scraping our toolset consisted of Python 3+ and Python libraries Selenium and
Requests. Requests was used in order to log in to the main sida webpage and send POST and
GET requests to retrieve building page links. Selenium was used to load each building web
page in order to scrape image links and masonry data.

Prototype Functionality
Binary Classifier
Currently, our prototype for the binary classifier is in the form of multiple separate models.
These models are based on the general architecture that the previous group implemented in
terms of the input and output handling and model setup. We created multiple models that
separately evaluate the buildings and print out the classifier dependent on what is expected.
This made the training process easier and faster, while still meeting the requirements of the
World Bank team.

Grad-CAM
The original Grad-CAM prototype can be observed in a demonstrative video the creators
published [8] or in the figure below. The visual explanation produced for the inputted CNN is a
heat-map of the features that contributed the most to the CNN’s output. We adjusted the
implementation of Grad-CAM to take in multiple inputs. This was used to understand our models
to make training adjustments easier.

Grad-CAM applied to a cat-dog image classifier.

Data Augmentation
As images are passed to the model for training we were able to specify various data
augmentations. We decided to use the following augmentations: zoom (± 20%), rotate (± 20%),
brightness adjustment (± 40%), horizontal flip, and shear (± 20%). These adjustment ranges
were selected somewhat arbitrarily. In the next week, we would like to investigate if the ranges
can be optimized as hyperparameters. We hope that this assists in achieving maximum model
accuracy.

Web Scraping
The Python scraper is broken into two main parts. The first piece of the scraper uses Python's
request library and takes advantage of a filter, POST, and GET requests found on sidas website
in order to pull links to all 17,000+ buildings that sida has images and other information about.
After the links or all buildings are retrieved the second piece of the scraper is used.

The second piece of the scraper uses the selenium Python library. This library enables the
scraper to be able to load javascript that is responsible for rendering images and other web
page elements that are not present in the static webpage html. This part of the scraper will
iterate over all of the previously retrieved building links and load each of their webpages in order
to pull any found image links and masonry data pertaining to the given building.

Evaluation

Model Performance Evaluator
This component of the system measures the performance of the classification models by
calculating accuracy, precision, recall, F1 score, and area under the curve. It takes in the
classifications on the testing data made with the model and compares them to the classifications
entered manually. Some of these measurements are built into frameworks like Keras or sklearn,
and they will be more useful for evaluating binary classifications. As an additional matrix we
have a script to get the Cohen Kappa score that measures the inter-rater reliability. This runs off
of Sklearn reading in the labels from both the manual and model generated images. Currently
the models training results in a score of less than .2 meaning they have a poor agreement.

Due to time constraints, we were only able to fully implement a few binary classifier models, with
limited training. Our current data is not as accurate as the multiclass model from previous

groups, which could indicate that the binary method is inadequate for the task of building
classification. However, our results demonstrated adequate model functionality as a baseline,
and when supported by heatmap analysis and further training we expected the models would
produce improved performance results. The datasets we trained with were very biased towards
specific categories for some of the questions, and this can be resolved by using data
augmentation and balancing the inputs to form a more even distribution of true/false labels.
Future groups may be able to fully utilize our models using the additional Nepal data that we set
up this quarter, or by incorporating a hyperparameter optimization tool like Sagemaker, though
this could require extensive data reorganization on behalf of the World Bank.

Grad-CAM Evaluation
The evaluation of heatmap activations via the Grad-CAM algorithm is mostly performed
observationally for each network used. When tested with single-input sample networks, the
algorithm has produced reasonable output heatmaps, in-line with model accuracy. When used
with the binary classifiers, heatmaps can be verified on a per-model basis by observing how the
individual model accuracy corresponds to focus regions of the generated heatmaps. With high
accuracy models that we have trained both the single and multi-image versions are able to
produce reliable heat maps based on the training model.

Conclusion
The goal of our project was to assist the World Bank in analyzing and classifying school
buildings, to improve their ability to determine building condition. We were provided building
photos from the Kyrgyz Republic and Nepal, and were tasked with implementing various
building classification models using tools provided by AWS and previous groups. In addition, we
explored options for improving validation methods and increasing model explainability, including
methods for generating activation heatmaps. While we were unable to create models for every
classification category requested due to time constraints, we were able to implement much of
the underlying functionality for these models, and improve the software structure for future
groups. In the following sections, we outline the key aspects of our final implementation, its
relevance to the field of AI, and some of the challenges we faced during this project.

Requirements
The requirements that we were given for the project were to create and refine a binary
classification system for judging the structure and safety of school buildings in Nepal and
Kyrgyz. Other tasks included the preparation of different data sources and setting up evaluation
metrics for the models that we created. This involved scraping data from multiple sites in the
form of both photos and the accompanying annotations for them in some cases.

Specifically, the requirements laid out were:

1. Prepare a set of training data using photos taken in Kyrgyz and Nepal.

2. Improve the data pipeline for OneDrive and implement a pipeline for ArcGIS that is
capable of scraping new information, i.e. more photos and masonry information.

3. Separate the classifier models into a set of binary classifiers with a simplified logic tree.
The binary classifiers requested were as follows, in descending order of importance.

a. Number of stories
b. Presence of concrete pillars
c. Relatively small windows
d. Brick walls
e. PC wall panels
f. Major portion of the walls are of earthen material

4. Set up model performance evaluations.
5. Improve data augmentation and fine tune the models as needed.

Additionally, towards the end of the project, we introduced the following requirements after
discussion with the World Bank’s team:

6. Improve the existing code base’s structure, moving code out of single files as
appropriate into a more modular design.

7. Add documentation for the existing code base and indicate what future work should
focus on.

Out of the initial requirements, we fulfilled #1, #2, and #4 exactly as discussed. For #3, in the
interest of time, we focused our attention on only a few of the models, which were approved by
the World Bank team in advance. For #5, we performed some fine tuning of the models, but the
existing data augmentation implementation was broken in the code base that we were provided,
so only simple data augmentation was performed. For tasks #6 and #7, we reorganized
previous teams’ project structure, and provided additional documentation for all relevant scripts.

System Design and Implementation
For our project we had 4 main parts: the binary classifier, Grad-CAM, Data Augmentation and
Web Scraping. We inherited a code base used by a project team from Winter 2020 that used
Keras to perform the training for the model. In this section we will discuss the technical features
and implementation issues we ran into with each section.

Binary Classifier
The binary classifier adapted from the previous sections model used tensor flow packages with
a keras front end. Since the previous model was so vastly different from the binary classification
system and documentation was lacking this ended up being a major hurdle for development.
While different models were created most of them achieve very low accuracy. This problem was
compounded by the issue of not being able to transfer files directly from the S3 buckets. This
meant that other teams that wanted to work and train with the models were met with this barrier.

The classification team also had issues with the data provided and instances of AWS they were

allowed to use. The issue with the data was not having access to a well organized dataset, with
very few of the needed photos being ready on the provided onedrive. The AWS issue meant
that large training instances could not be spun up and any training that was done would have to
be evaluated after a very long training period. This led to slow development times and overall
lack of progress.

Grad-CAM
The Grad-CAM implementation originally only allowed for one input. Since our model would
always take in multiple inputs it had to be redesigned to take multiple pictures in as input. To
achieve this the Grad-CAM team were able to load all the photos and model in but then make it
run through each of the photos individually to show the heatmaps. It would still be able to feed
all the pictures into the model as required but only provided the heatmap for the one picture
being addressed at a time. Since the models from the binary classifier were of very low
accuracy this did not prove to be very helpful but tests on other models showed that it could
eventually be used to provide better feedback to trainers.

Data Augmentation
Data augmentation is done through simple keras augmentations defined for a data generator.
The data augmentation in place when the project began already contained the preprocessing
that would be needed for the data used to train the model. Because of this, the data
augmentation step should have largely been taken care of by using this provided pipeline;
however, we found issues with correctness of the augmentation that was provided. Thus, we
would have needed to restart how the augmentation was set up instead of simply tweaking it.
We decided to only perform simple augmentation for the sake of time.

Web Scraping
This team was tasked with getting the data from the Kyrgyz dataset provided by the World
Bank. This turned out to be a lot more labor intensive task than first thought taking most of the
quarter to scrape all of the images. Each of the images had to be loaded into their respective
URLs then have the different annotations attached to them. After all this was done a separate
scraping script went though and downloaded each of the images. This data has all been
collected now but was not able to be put to use for training the model this quarter.

Relevance for AI
This project used a deep learning classification system to capture key features of school
buildings from photographs. Using Keras to train models, the project accurately labeled a set of
binary classification questions for each photo. This allows for automating the process of the user
manually entering answers to each binary question. The intent of the binary classification
method was to simplify the existing multi-class system, in an attempt to reduce complexity and
improve model performance. Our results demonstrate that this was not the case, but this could

be due to other factors, such as those listed in the next section.

Lessons Learned and Future Work

Our team struggled to adequately train the data. The documentation and code structure from
the last team made it difficult to effectively adapt their work to meet the needs of our sponsor.
We communicated this issue with our sponsor, and we made an effort to better document and
organize all work that has been completed up to this point. A key takeaway from this experience
is the importance of quality code structure, file organization, and comments when working on
projects which will eventually be referenced or passed on to future teams.

Now that we have scraped the Nepal building image data, created a binary classification
system, and adapted GradCAM to work with future trained models, the next step is to train
models which can classify high priority features such as concrete columns and brick walls in
image data. In addition, models which can classify lower priority features such as PVC panels
and earthing material in walls should also be trained. We advise the World Bank and the DxHub
to turn these deliverables into a year-long senior project or master’s thesis. At this point of the
project, it would be impractical to try and accomplish these deliverables in a single quarter
because it takes a lot of time just to become familiar with AWS, the datasets, and the previous
teams’ work.

References
[1] “OVERVIEW,” ​Global Program for Safer Schools (GPSS)​. [Online]. Available:
https://gpss.worldbank.org/en/glosi/overview. [Accessed: 19-Jan-2021].

[2] M. Jiang et al., “Making Schools Safer and Resilient at Scale in Kyrgyzstan.”
https://drive.google.com/file/d/1fLE8G4m7tjpMRoAIs32pz0MmTpqIdJAW/view

[3] Zhineng Chen, Shanshan Ai, and Caiyan Jia. 2019. Structure-Aware Deep Learning for
Product Image Classification. ACM Trans. Multimedia Comput. Commun. Appl. 15, 1s, Article 4
(February 2019), 20 pages. DOI:​https://doi.org/10.1145/3231742

[4] D. Zhang ​et al​., "Knowledge Graph-Based Image Classification Refinement," in ​IEEE
Access​, vol. 7, pp. 57678-57690, 2019, doi: 10.1109/ACCESS.2019.2912627.

[5] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM:
Visual Explanations from Deep Networks via Gradient-based Localization,” Int J Comput Vis,
vol. 128, no. 2, pp. 336–359, Feb. 2020, doi: 10.1007/s11263-019-01228-7.

[6] “Caffe | Deep Learning Framework.” https://caffe.berkeleyvision.org/ (accessed Feb. 21,
2021).

[7] “keras-team/keras-io,” GitHub. https://github.com/keras-team/keras-io (accessed Feb. 21,
2021).

https://drive.google.com/file/d/1fLE8G4m7tjpMRoAIs32pz0MmTpqIdJAW/view
https://doi.org/10.1145/3231742

[8] “Grad-CAM - YouTube.” https://www.youtube.com/watch?v=COjUB9Izk6E&feature=youtu.be
(accessed Feb. 21, 2021).

