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Abstract 
In rural areas of Nepal and surrounding countries, earthquakes are common and often deadly. 
The World Bank has been collecting data over the past decade on school buildings in these 
areas in order to evaluate their structural integrity and determine the risk earthquakes pose to 
students in school. Originally the World Bank manually classified the data by studying 
photographs of the buildings and reporting structural features and overall integrity.  Recently 
they have been attempting to replace this system with an automatic classifier which leverages 
computer vision techniques.  This project attempts to improve the state of the World Bank’s 
current automatic classifier by gathering additional training data from previously unused World 
Bank sources. This data is used to create a binary classifier that will work to classify the 
buildings that are input to the Global Library of School Infrastructure (GLOSI). In order to 
validate the results from this new binary classifier the School Safety team has created scripts 
that print out the accuracy, precision and F score of the model. This along with the GradCam 
platform will allow for better training in future scenarios. 

Introduction, Background, and Related Work 

Introduction 
The goal of this project is to capture key features of the Global Library of School Infrastructure 
(GLOSI) structural typologies [1], by expanding a deep learning classification system that 
integrates school building photographs. By doing so, we hope to improve upon The World 
Bank's current manual classification method by supplementing or replacing it with an automatic 
system. Use of this system can reduce the cost and time of in-field data collection, and it will 
help promote creation of a reliable school baseline database.  
 
To complete this task, we use deep learning to create a more robust image classification system 
that can use images taken in the field and provide classification of the buildings based on 
previous classifications. Along with this improvement to the GLOSI, we will also be writing up a 
best practices document of the type of images and number of images that would be optimal to 
submit to the platform. This would allow more basic users rather than just trained structural 
engineers to upload and submit data to the GLOSI platform. The World Bank and governments 
would then be able to get a better understanding of the risks to their school infrastructure.  

Background & Related Work 
This project has been worked on by multiple Cal Poly groups in previous quarters, in 
collaboration with the World Bank and Cal Poly DxHub. Previous teams have built a baseline 
ML model, built on InceptionResnetV2, which was used to predict three building criteria: building 
category, main structural system, and building height. They obtained accuracies of 81%, 67%, 
and 95% in the respective categories [2]. In addition, some work has been done to improve the 
training data pipeline, as well as improve the ML model using data augmentation and multiple 



input capability. Other work in Image classification has been conducted in many other fields 
such as medical research and product classification which can be altered to look at building 
safety and architecture [3]. Also the use of Knowledge graphs has been used to further refine 
image classification providing better accuracy [4]. 

System Design 
The overall project is comprised of the following components: data preprocessing, data pipeline, 
logic tree with binary classifications (model experiment 1), model performance evaluator, heat 
map (model experiment 2), data augmentation improvement (model experiment 3), and model 
fine tuning (model experiment 4). Our team is composed of two sub-teams that will work 
distributedly across all seven components of the project. The ultimate goal of this project is to 
create an ML system which can classify school site data (building images), so the World Bank 
and local governments can make meaningful policy decisions based on quantitative evidence. 

Functional Components 
Data Preprocessing 
Previous teams have already scraped a World Bank website for the front image of every 
building in Kyrgyz and Nepal. The sponsor requested our teams to scrape the remaining images 
of each Nepal building. There are roughly 8000 buildings with more than eight images per 
building. This system interfaces with the OneDrive as the images must be uploaded here. 
 
Data Pipeline 
Once all the required images were uploaded to OneDrive and the full dataset was assembled 
there, we set up a data pipeline to access that dataset for training and testing of our ML models. 
This involved us using an API to pull data to AWS where our training and testing was 
performed. The World Bank has not specified if they need this to be accessible for the other 
services, so this was only used internally for training. 
 
Logic Tree with Binary Classifications 
The previous classifier model takes in a group of eight photos at a time, and it outputs the result 
to a concatenated string describing the structural or functional features of the building. Our goal 
was to adjust the classification approach and simplify the previous one to a binary decision tree 
model. We used separate models to classify binary aspects of a building, such as material type 
and building height. Then, these properties were used to determine the overall building 
category, based on a predefined logic table. 
 
Model Performance Evaluator 
This component measures the performance of the classification models by calculating accuracy, 
precision, recall, F1 score, and area under the curve. It takes in the classifications on the testing 
data made with the model and compares them to the classifications entered manually. Some of 
these measurements are built into frameworks like Keras, but we also built a script that used 



scikit learn metrics to evaluate these parameters.. 
 
Heat Map 
Researchers from Georgia Tech have created a program called “Grad-CAM” which uses deep 
networks and gradient-based localization to visually represent distinguishable features using 
“heat maps”. Our team referenced the research and modified the publicly available Grad-CAM 
code in order to generate a “heat map” which can distinguish different aspects of the building. 
The original Grad-CAM software is able to distinguish cats and dogs in the same image; for our 
purposes, we needed to distinguish components such as building stories, columns, and 
windows. This technology allows us to determine if our binary classifiers are converging on 
aspects of a building that are relevant to the question. 
 
Improve Data Augmentation 
We primarily used Keras for data augmentation. During the model training stage, we specified 
various data augmentations as images are passed to the model. Some useful augmentations 
included zoom, rotate, brightness adjustment, horizontal flip, and shear. Some other common 
augmentations are not useful in the context of images of school buildings, like vertical flips, 
because images aren’t taken upside down. Since the domain was user taken images of schools, 
some augmentations that represent user error or normal user variation, such as noise injection 
could prove beneficial. These augmentations significantly increase the diversity of images 
available for training models, without actually collecting new images, and make class 
proportions more balanced. Furthermore, the model will be able to generalize more (i.e. not 
overfit) and should perform better on test data. 
 
Fine Tuning Model 
Fine tuning the model could easily be done with AWS Sagemaker.  Sagemaker iteratively tunes 
the hyperparameters of a neural network to improve performance.  Additionally, Keras will allow 
us to alter parameters like the learning rate, loss function, batch size, and number of epochs. 
Choosing the correct values or functions for these parameters can significantly impact the 
accuracy of the system.  Through research and experimentation we hope to find the ideal 
values for these parameters with our newly augmented model and data.  
  



Figure 1:​ High-level System UML Diagram 

 
Figure 2:​ Decision Tree Training Model

 



APIs and libraries 
Data Pipeline 
OneDrive developer tools: ​https://github.com/OneDrive/onedrive-sdk-python 
This API was used to automate downloading images into AWS for training and testing purposes. 
Libraries used: Urllib, pandas 
 
Binary classification model 
Libraries used: Tensorflow, Keras, pandas, sklearn, numpy 
These are the most common libraries for any machine learning related tasks. Tensorflow and 
Keras were used for model architecture, training and testing. Pandas was used for accessing 
and formatting the provided labels and classes. Sklearn is used for preparing data for training 
and testing, for example performing data splits. Numpy is used for some general data 
processing. 
 
Heat Map 
Libraries used: OpenCV 
Same ones used for binary classification models with the addition of opencv for image 
formatting. 
Github Repository: ​https://github.com/ramprs/grad-cam/ 
Grad-CAM Demo: ​https://www.youtube.com/watch?v=COjUB9Izk6E&feature=youtu.be 
 
Performance metrics 
All the required metrics can be accessed from Tensorflow or sklearn and these libraries allow for 
the definition of new metrics if need be. 
 
Improve Data Augmentation 
We used Keras, an open-source library that provides a Python interface for artificial neural 
networks and makes it easy to create, train, and evaluate models. It is built on top of the 
Tensorflow library. 
 
Fine Tuning Model 
Our team suggests using AWS SageMaker to perform the final model tuning. Given that our 
project is deployed in the AWS ecosystem, SageMaker is a natural decision as it will integrate 
seamlessly with the other components of the system. We never used SageMaker, but suggest 
its use in the future. 

Knowledge representation issues 
The main knowledge representation issue that is apparent to us right now is how the 
performance of the binary classification model on the multiclass based dataset. Using multiple 
binary classifiers may be less accurate at categorizing building-types overall, and could 
introduce unwanted complexity. We monitor model accuracy using the various evaluation 
metrics described to make sure this issue is addressed. 

https://github.com/OneDrive/onedrive-sdk-python
https://github.com/ramprs/grad-cam/
https://www.youtube.com/watch?v=COjUB9Izk6E&feature=youtu.be


 

Implementation Details 
Our system consists of various main components working independently, namely, we have 
binary classification models, an algorithm for highlighting important features, and a web scraper 
that gathers the data used for our algorithms. Below we describe the technologies that were 
used to create these components as well as some of the challenges we have faced while 
building them. 
 

Technologies, Tools, Languages, Development Environments 
All of the components in our system were hosted on AWS services. Each component utilized 
different technologies within the AWS suite, each of which are noted below. 

 
Binary Classifier 
Our binary classifier was adapted from the previous group’s model and uses Python3’s 
tensorflow packages. In particular, models are defined using the keras frontend for tensorflow. 
The model is trained from a keras data generator pipeline that performs the necessary 
preprocessing and augmentation of image data.  
 
Grad-CAM 
Another component that our system includes Grad-CAM which is an algorithm that is able to 
produce “visual explanations” for Convolutional Neural Networks (CNN) [5]. The original 
Grad-CAM system is written in the Lua programming language and uses Caffe deep learning 
framework as a way of inputting the CNN [6]. However, since our classification models are 
written in Keras we are using a Keras implementation of the Grad-CAM [7].  

 
Data Augmentation 
We used Python’s Keras library for data augmentation. Keras was a great choice for data 
augmentation for three reasons. (1) The convolutional neural network model was already written 
using Keras, so we did not have to learn/include a new library to the code, (2) it provided the 
features we wanted natively, and (3) the images were randomly (with some constraints) 



augmented in memory before being passed to the model, eliminating the need to save 
augmented images to disk, which would have made the size of the dataset much larger.  
 
Web Scraping 
For web scraping our toolset consisted of Python 3+ and Python libraries Selenium and 
Requests. Requests was used in order to log in to the main sida webpage and send POST and 
GET requests to retrieve building page links. Selenium was used to load each building web 
page in order to scrape image links and masonry data. 

Prototype Functionality 
Binary Classifier 
Currently, our prototype for the binary classifier is in the form of multiple separate models. 
These models are based on the general architecture that the previous group implemented in 
terms of the input and output handling and model setup. We created multiple models that 
separately evaluate the buildings and print out the classifier dependent on what is expected. 
This made the training process easier and faster, while still meeting the requirements of the 
World Bank team. 
 
Grad-CAM 
The original Grad-CAM prototype can be observed in a demonstrative video the creators 
published [8] or in the figure below. The visual explanation produced for the inputted CNN is a 
heat-map of the features that contributed the most to the CNN’s output. We adjusted the 
implementation of Grad-CAM to take in multiple inputs. This was used to understand our models 
to make training adjustments easier.  

 
Grad-CAM applied to a cat-dog image classifier. 

 
Data Augmentation 
As images are passed to the model for training we were able to specify various data 
augmentations. We decided to use the following augmentations: zoom (± 20%), rotate (± 20%), 
brightness adjustment (± 40%), horizontal flip, and shear (± 20%). These adjustment ranges 
were selected somewhat arbitrarily. In the next week, we would like to investigate if the ranges 
can be optimized as hyperparameters. We hope that this assists in achieving maximum model 
accuracy.  
 
 
 



Web Scraping 
The Python scraper is broken into two main parts. The first piece of the scraper uses Python's 
request library and takes advantage of a filter, POST, and GET requests found on sidas website 
in order to pull links to all 17,000+ buildings that sida has images and other information about. 
After the links or all buildings are retrieved the second piece of the scraper is used.  
 
The second piece of the scraper uses the selenium Python library. This library enables the 
scraper to be able to load javascript that is responsible for rendering images and other web 
page elements that are not present in the static webpage html. This part of the scraper will 
iterate over all of the previously retrieved building links and load each of their webpages in order 
to pull any found image links and masonry data pertaining to the given building. 

Evaluation 

Model Performance Evaluator 
This component of the system measures the performance of the classification models by 
calculating accuracy, precision, recall, F1 score, and area under the curve. It takes in the 
classifications on the testing data made with the model and compares them to the classifications 
entered manually. Some of these measurements are built into frameworks like Keras or sklearn, 
and they will be more useful for evaluating binary classifications. As an additional matrix we 
have a script to get the Cohen Kappa score that measures the inter-rater reliability. This runs off 
of Sklearn reading in the labels from both the manual and model generated images. Currently 
the models training results in a score of less than .2 meaning they have a poor agreement.  

 
Due to time constraints, we were only able to fully implement a few binary classifier models, with 
limited training. Our current data is not as accurate as the multiclass model from previous 



groups, which could indicate that the binary method is inadequate for the task of building 
classification. However, our results demonstrated adequate model functionality as a baseline, 
and when supported by heatmap analysis and further training we expected the models would 
produce improved performance results. The datasets we trained with were very biased towards 
specific categories for some of the questions, and this can be resolved by using data 
augmentation and balancing the inputs to form a more even distribution of true/false labels. 
Future groups may be able to fully utilize our models using the additional Nepal data that we set 
up this quarter, or by incorporating a hyperparameter optimization tool like Sagemaker, though 
this could require extensive data reorganization on behalf of the World Bank. 

Grad-CAM Evaluation 
The evaluation of heatmap activations via the Grad-CAM algorithm is mostly performed 
observationally for each network used. When tested with single-input sample networks, the 
algorithm has produced reasonable output heatmaps, in-line with model accuracy. When used 
with the binary classifiers, heatmaps can be verified on a per-model basis by observing how the 
individual model accuracy corresponds to focus regions of the generated heatmaps. With high 
accuracy models that we have trained both the single and multi-image versions are able to 
produce reliable heat maps based on the training model.  

Conclusion 
The goal of our project was to assist the World Bank in analyzing and classifying school 
buildings, to improve their ability to determine building condition. We were provided building 
photos from the Kyrgyz Republic and Nepal, and were tasked with implementing various 
building classification models using tools provided by AWS and previous groups. In addition, we 
explored options for improving validation methods and increasing model explainability, including 
methods for generating activation heatmaps. While we were unable to create models for every 
classification category requested due to time constraints, we were able to implement much of 
the underlying functionality for these models, and improve the software structure for future 
groups. In the following sections, we outline the key aspects of our final implementation, its 
relevance to the field of AI, and some of the challenges we faced during this project. 

Requirements 
The requirements that we were given for the project were to create and refine a binary 
classification system for judging the structure and safety of school buildings in Nepal and 
Kyrgyz. Other tasks included the preparation of different data sources and setting up evaluation 
metrics for the models that we created. This involved scraping data from multiple sites in the 
form of both photos and the accompanying annotations for them in some cases. 
 
Specifically, the requirements laid out were: 

1. Prepare a set of training data using photos taken in Kyrgyz and Nepal. 



2. Improve the data pipeline for OneDrive and implement a pipeline for ArcGIS that is 
capable of scraping new information, i.e. more photos and masonry information. 

3. Separate the classifier models into a set of binary classifiers with a simplified logic tree. 
The binary classifiers requested were as follows, in descending order of importance. 

a. Number of stories 
b. Presence of concrete pillars 
c. Relatively small windows 
d. Brick walls 
e. PC wall panels 
f. Major portion of the walls are of earthen material 

4. Set up model performance evaluations. 
5. Improve data augmentation and fine tune the models as needed. 

 
Additionally, towards the end of the project, we introduced the following requirements after 
discussion with the World Bank’s team: 

6. Improve the existing code base’s structure, moving code out of single files as 
appropriate into a more modular design. 

7. Add documentation for the existing code base and indicate what future work should 
focus on. 

 
Out of the initial requirements, we fulfilled #1, #2, and #4 exactly as discussed. For #3, in the 
interest of time, we focused our attention on only a few of the models, which were approved by 
the World Bank team in advance. For #5, we performed some fine tuning of the models, but the 
existing data augmentation implementation was broken in the code base that we were provided, 
so only simple data augmentation was performed. For tasks #6 and #7, we reorganized 
previous teams’ project structure, and provided additional documentation for all relevant scripts. 

System Design and Implementation 
For our project we had 4 main parts: the binary classifier, Grad-CAM, Data Augmentation and 
Web Scraping. We inherited a code base used by a project team from Winter 2020 that used 
Keras to perform the training for the model. In this section we will discuss the technical features 
and implementation issues we ran into with each section. 

Binary Classifier 
The binary classifier adapted from the previous sections model used tensor flow packages with 
a keras front end. Since the previous model was so vastly different from the binary classification 
system and documentation was lacking this ended up being a major hurdle for development. 
While different models were created most of them achieve very low accuracy. This problem was 
compounded by the issue of not being able to transfer files directly from the S3 buckets. This 
meant that other teams that wanted to work and train with the models were met with this barrier.  
 
The classification team also had issues with the data provided and instances of AWS they were 



allowed to use. The issue with the data was not having access to a well organized dataset, with 
very few of the needed photos being ready on the provided onedrive. The AWS issue meant 
that large training instances could not be spun up and any training that was done would have to 
be evaluated after a very long training period. This led to slow development times and overall 
lack of progress. 

Grad-CAM 
The Grad-CAM implementation originally only allowed for one input. Since our model would 
always take in multiple inputs it had to be redesigned to take multiple pictures in as input. To 
achieve this the Grad-CAM team were able to load all the photos and model in but then make it 
run through each of the photos individually to show the heatmaps. It would still be able to feed 
all the pictures into the model as required but only provided the heatmap for the one picture 
being addressed at a time. Since the models from the binary classifier were of very low 
accuracy this did not prove to be very helpful but tests on other models showed that it could 
eventually be used to provide better feedback to trainers.  

Data Augmentation 
Data augmentation is done through simple keras augmentations defined for a data generator. 
The data augmentation in place when the project began already contained the preprocessing 
that would be needed for the data used to train the model. Because of this, the data 
augmentation step should have largely been taken care of by using this provided pipeline; 
however, we found issues with correctness of the augmentation that was provided. Thus, we 
would have needed to restart how the augmentation was set up instead of simply tweaking it. 
We decided to only perform simple augmentation for the sake of time. 

Web Scraping 
This team was tasked with getting the data from the Kyrgyz dataset provided by the World 
Bank. This turned out to be a lot more labor intensive task than first thought taking most of the 
quarter to scrape all of the images. Each of the images had to be loaded into their respective 
URLs then have the different annotations attached to them. After all this was done a separate 
scraping script went though and downloaded each of the images. This data has all been 
collected now but was not able to be put to use for training the model this quarter.  

Relevance for AI 
This project used a deep learning classification system to capture key features of school 
buildings from photographs. Using Keras to train models, the project accurately labeled a set of 
binary classification questions for each photo. This allows for automating the process of the user 
manually entering answers to each binary question. The intent of the binary classification 
method was to simplify the existing multi-class system, in an attempt to reduce complexity and 
improve model performance. Our results demonstrate that this was not the case, but this could 



be due to other factors, such as those listed in the next section. 

Lessons Learned and Future Work 

Our team struggled to adequately train the data. The documentation and code structure from 
the last team made it difficult to effectively adapt their work to meet the needs of our sponsor. 
We communicated this issue with our sponsor, and we made an effort to better document and 
organize all work that has been completed up to this point. A key takeaway from this experience 
is the importance of quality code structure, file organization, and comments when working on 
projects which will eventually be referenced or passed on to future teams. 
 
Now that we have scraped the Nepal building image data, created a binary classification 
system, and adapted GradCAM to work with future trained models, the next step is to train 
models which can classify high priority features such as concrete columns and brick walls in 
image data. In addition, models which can classify lower priority features such as PVC panels 
and earthing material in walls should also be trained. We advise the World Bank and the DxHub 
to turn these deliverables into a year-long senior project or master’s thesis. At this point of the 
project, it would be impractical to try and accomplish these deliverables in a single quarter 
because it takes a lot of time just to become familiar with AWS, the datasets, and the previous 
teams’ work. 
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