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Abstract

Accurate socio-economic measures are vital to the success of poverty-intervention
programs yet are unavailable in regions of the world where they are most needed.
Models that can predict poverty using satellite imagery and household survey data are,
therefore, invaluable for helping households most in need. Using an existing two-part
model, we aim to improve the accuracy of poverty predictions for an unconditional cash
transfer program in . By altering several aspects of the model including the
range of spectral bands for the images used to predict nighttime lights, and optimizing
the hyperparameters of both stages of our model, we are able to increase the accuracy
of poverty predictions by 3.8 percent.
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1 Introduction
More than 9.2 percent of the world, or 689 million people, lives in extreme poverty

on less than 1.9 dollars per day (The World Bank, 2020). Fortunately, over the past few
decades, poverty has continued to decline, reducing 1 percent every year from 1990 to 2015.
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However, the COVID-19 pandemic has impeded this progress. The World Bank’s 2020 report
on poverty projects that over 150 million people could fall back into extreme poverty as a
result of the pandemic (The World Bank, 2020).

A huge challenge is figuring out which areas and households are most affected by the
pandemic and are struggling at higher proportions. This allows organizations fighting poverty
to effectively use their resources; however, measuring poverty has always been challenging,
even before the pandemic. Surveys/censuses are a traditional method of measuring poverty
but are not conducted often enough to adapt to new issues like COVID-19 and are very
costly. Over the past decade, finding alternative, cheaper ways of measuring poverty and
other economic indicators has been an incredibly important area of research.

In this paper, we use a satellite imagery approach to measuring poverty because
it is cheap and it makes it possible to get more updated measures of poverty than other
methods. We will use deep learning Convolutional Neural Networks (CNNs) to predict
poverty using satellite imagery. We will be working with an earlier CNN model provided by
the World Bank and will make 3 improvements to achieve more accurate predictions that
are helpful in targeting poverty. First, we introduce multispectral imagery into our model
to incorporate more information that our model can learn from. Secondly, we improve the
model from achieving just a binary measure of poverty to a continuous measure of poverty
to differentiate between different poverty levels. Finally, on top of measuring poverty, we
alter the model to allow us to also predict other economic measures of well-being.

Many policy strategies have been taken to reduce worldwide poverty. The earliest
programs focused on conditional cash transfer programs (CCTs) which give money to poor
people in return for meeting certain conditions. For example, the PROGRESA program
disbursed cash transfers to households in Mexico if the individuals within recipient households
engaged in specific behaviors regarding medical care and health education (Gertler and
Boyce, 2001). CCTs have had some success in the past (?), but they require a large amount
of bureaucratic oversight to be administered. An arguably more efficient alternative to
conditional cash transfers, are direct cash transfers, which provide financial aid without any
conditions. For example, GiveDirectly is giving monthly payments to impoverished villages
in Kenya for a total of 12 years with no conditions attached (Aizenman, 2017). One of
the main benefits to these direct cash transfers is the limited oversight required. Instead of
administering a universal basic income for an entire country, cash transfers tend to target
specific groups in financial need (Banerjee et al., 2019).

The effectiveness of cash transfer programs is constantly under scrutiny. The
long-term effects of cash transfer programs are still unknown since most studies involving
these programs have difficulties measuring long-term effects or were administered recently
(Aizenman, 2017); however, there is evidence that cash transfers, conditional and unconditional,
benefit the communities receiving aid in the short run. For example, a conditional cash
transfer program in Malawi increased school attendance and decreased sexual activity in
young women (Baird, McIntosh, and Ãzler, Baird et al.). The unconditional GiveDirectly
cash program in Africa increased access to medication, access to household necessities, and
allowed some individuals to save funds or start businesses (Aizenman, 2017). However, these
cash transfer programs are only effective when impoverished groups are identified correctly.
The positive impacts of cash transfer programs are diluted when groups are given aid based
on affiliations (such as political or cultural) as opposed to financial need (Banerjee et al.,
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2019).
has found it challenging to determine which households to target. The aim

of the program is to help bring people out of poverty rather than keeping them dependent
on the support of this program. For this reason, it becomes important to be able measure
changes in poverty and determine which households still need the support and those that
don’t. Furthermore, research suggests that different rates of disbursement among provinces
may even be rooted in political causes rather than based off of need . For this reason,
having accurate poverty measures for would help hone in on which areas should
receive cash grants to maximize the impact of the cash grant program and reduce the cost
of unnecessary transfers.

A traditional method for estimating poverty has been via door-to-door household
surveys; however, this is expensive and time consuming (Tingzon et al., 2019). Burke et al.
(2021) analyzed prior research methods in estimating poverty using satellite imagery and
concluded the following about household surveys: “surveys are typically only representative
at the national or (sometimes) regional level, meaning they often cannot be used to generate
accurate summary statistics at a state, county, or more local level” (Burke et al., 2021).
Our research focuses on estimating poverty levels at locations below the poverty line, which
happen to be at local levels. One of the newer and cost effective approaches to measuring
poverty is through satellite imagery. This approach can be traced back to research by
Henderson et al. (2012), which describes how economic activity can be measured from space.
The researchers introduced US Air Force Weather Service satellite night-lights data as a
useful proxy for economic activity for regions with the poorest economic data quality, rated
from A (best) to D (worst). “Almost all industrialized countries receive a grade of A. By
contrast, for the 43 countries of sub-Saharan Africa, 17 get a D and 26 get a C” (Henderson
et al., 2012). The researchers gave a greater focus to grade D countries, which include many
African countries. They estimated true income growth from 1992 to 2003 by combining
information on measured income growth with night-time light information through a fixed
effects model and achieved a R2 of 0.66. This analysis paved the way for further research
attempts at improving the original methods of Henderson et al. (2012) in developing countries
such as the Philippines and India (Fatehkia et al., 2020; Tingzon et al., 2019; Yeh et al.,
2020).

There is plenty of literature that support the use of night-time satellite images of
lights to estimate several measures of human well-being. While human well-being can be
quantified in many different ways, night-time light images have been successfully used as
important inputs for estimating figures like GDP, electricity access, and poverty in varying
models. The methods that are used in estimating these measures of well-being start from
simple correlation analysis and regression modelling and can be as complex as deep-learning
algorithms (Ghosh et al., 2013). The wide variety of different approaches to using night-time
lights as a proxy variable in models for human well-being indicate that remote-sensing data
can serve as an important element in estimating poverty.

Recent research discussed by Burke et al. (2021) involve satellite imagery to predict
poverty that goes beyond the original approaches of Henderson et al. (2012). These methods
involve powerful machine learning neural network models that use satellite images as inputs
to predict wealth indexes. With noisy and limited training data of villages and their
corresponding poverty levels, researchers deployed more creative machine learning methods
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including simulating synthetic data, transfer learning, and unsupervised learning. Despite
the lack of quality training data, the model performance of these advanced methods remained
highly stable and robust to various types of training noise. According to Burke et al. (2021),
“information derived from satellites could always explain more than half, and often more
than 75%, of the variation in the survey-measured asset wealth, with performance appearing
to trend upward over time.” This statement summarizes 12 different studies that used
imagery in combination with other features to predict economic growth at local levels in
the developing world. Some of the best performing models use high-resolution satellite
imagery that are gathered from private APIs and are expensive, but others have accomplished
comparable results with free, publicly available satellite imagery.

Privately-accessed satellite images can be costly, time consuming and difficult to
access, so many researchers have attempted to use publicly available data, such as Landsat
7 satellite imagery (?). Other alternatives to privately-accessed satellite images include:
OpenStreetMap Data (Tingzon et al., 2019), individual level data such as Facebook User
Data (Tingzon et al., 2019) and mobile phone data (Steele et al., 2017). The combination
of satellite and individual level data provides an opportunity for estimation of poverty at
an individual or household level. Models that use a combination of phone usage data with
satellite images in statistical methods have been able to achieve predictions down to the
neighborhood or even household level rather than the larger regional or provincial sizes of
estimation (Steele et al., 2017). This presents an opportunity for more targeted policy and
action to be present, as it is more informative for a cash grant program to differentiate
poor neighborhoods or households. There are different measures of wealth that can be
used to estimate poverty with varying success. For example, Steele et al. (2017) found that
predicting an asset-based wealth index performed better in their combined phone data and
satellite image geostatistical model than models that attempted to estimate income or PPI.
Though income, PPI, and asset-based wealth indexes are all ways to measure human well-
being, their estimations may require different modeling approaches.

Some newer methods that estimate poverty using satellite imagery have also tried
to measure changes in poverty, as opposed to just getting a measure of poverty at one point
in time (Yeh et al., 2020). However, some researchers have struggled to adapt the satellite
learning approach to recognizing changes in poverty and economic development. Kondmann
and Zhu (2020) have tried in Rwanda using Landsat 7 data and found that the transfer
learning strategy struggles to recognize changes (Kondmann and Zhu, 2020). This may be
because it is difficult to spot economic changes through imagery alone because the economic
improvements may be more subtle. Additionally, they used Landsat 7 images which have
low resolution. In our research regarding , we are also using low-resolution Landsat
images.

Our paper seeks to build on the research mentioned above. Much research has been
done to measure poverty outside our country of interest, we seek to extend those methods
to . In addition to applying the transfer learning approach to , we aim
to improve this model in 3 different ways: incorporating multi-spectral imagery into the
model, predicting poverty as a continuous variable and using the model to predict other
economic variables. These contributions to previous methods allow for a deeper evaluation
of the effectiveness of social programs in . Jean et al. (2016) and Yeh et al. (2020)
have made similar contributions to this field of research while focusing on African countries.
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We plan to compare our results to the results obtained by Jean et al. (2016) and Yeh et al.
(2020). Therefore, our research can also be used to determine how generalizable previous
methods are to countries outside of the ones that have already been studied.

2 Data
We make use of several datasets to estimate our convolutional neural network

(CNN) model: Landsat 8 and VIIRS satellite images. The CNN is trained on larger image
datasets to help accurately choose the features needed to predict poverty. Once the features
are selected from the CNN, we use the OPM data, which contain our poverty outcome data.
Below we detail each data source.

Daytime light intensity
We use Land Remote-Sensing Satellite System (Landsat) 8 images from 2014 from

the Earth Engine Data Catalog. There are hundreds of thousands of daytime images but
due to sampling methods for nighttime light discussed in the next section, we utilize 50,583
daytime satellite images from areas in . Each image has a resolution of 48 by 48
where each pixel has 3 values corresponding to red, blue, and green pigments. Landsat images
also have visible and near-infrared bands to assess brightness temperature. To prepare this
data for the CNN, the daytime light values are outputted as arrays. This data was then
extracted into different arrays organized around
coordinates and each array was given a unique identifier so that features could later be
extracted from these arrays using the CNN.

The advantage of this data is that it has multi-spectral imagery but a limitation is
that they have a low to medium resolution so this makes it harder to pick up on different
features that we might be interested in, like roof material.

Nighttime light intensity
We use Visible Infrared Imaging Radiometer Suite (VIIRS) images from 2013-2018

using the Earth Engine Data Catalog. It contains monthly and annually averaged night time
light radiance measures. Since our daytime images are from 2014, we filter out all other years
of nighttime radiance values. We created a categorical and continuous measure of night time
light radiance. The original night time radiance values are continuous and mostly located
within the [0,1] range but outliers are heavily right-skewed; therefore, we add 1 and perform
a log transformation. In order to build the categorical measure, we use k-means clustering to
discretize each continuous value into 3 levels of night time light coded as 0 (low), 1 (medium),
or 2 (high). There are over 1.8 million nighttime light observations but the 3 levels are highly
unbalanced. In order to have perfect balance among the 3 classes, we down sample the two
majority classes to the size of the minority class. Now, all 3 levels of nighttime light occur
with 1

3
frequency. Each class contains 16,861 nighttime light values for a total of 50,583

values. For each daytime image at a specific area in , we merged its corresponding
level of categorical and continuous annual night time light. We do not use monthly night
time radiance values due to having only one 2014 daytime image per specific area so that we
may keep a one-to-one merge. To prepare this data for the CNN, the nighttime light labels
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are outputted as an array and a parameter dictionary, such as the number of nighttime light
labels, is created.

Survey
survey data is a proprietary dataset that

includes survey data describing individuals in . The de-identified data and
coordinates were cleaned up, which appended relevant variables (such as asset and

consumption data) and created anonymized household IDs and coordinates. At the household
level, each observation of a surveyee appears multiple times over time creating a panel
dataset structure with a total of households in the year 2014. Each observation
includes demographic data including age, gender, marriage status, and residency status.
More importantly, each participant is labelled if they are a recipient. A normalized

poverty score is included for each participant. Since the score is normalized, the
threshold for eligibility for benefits is 0. Geographic information- such as whether they
live in an urban or rural area, or what province they live in- is also available.

The survey data also includes answers to several questions that surveyors
must ask or determine while conducting their surveys. Questions range from asking about
details regarding a participant’s education to whether or not a surveyor considers the surveyee
to be disabled. An important fact about these survey questions is that not all questions are
filled in for all participants in all periods. Moreover, it is quite common for some questions
to not have an answer at all. This portion of the data may provide some interesting insight
and detail about some participants, but has a risk of being up to interpretation to surveyors
or missing too many responses to warrant usage in models, which may lead to bias in the
data. Another important quality to note about the dataset is that not all households are
present in all survey years. Table 1 shows data for the year 2014.

Table 1: Survey Data
Mean Statistics

Age Statistics Per HH Oldest Person Youngest Person HH Head
55.72 3.6 46.63

Localities Urban Proportion Rural Proportion
25.43% 74.57%

Unconditional Cash Grant Proportion of Recipients Proportion of Non-Recipients
% %

HH = household.

3 Problem description
The aim of this paper is to improve the prediction accuracy rate given an existing

model proposed by Marty and Duhaut (2021). The model uses a transfer learning approach
with a pre-trained CNN model. The satellite images are taken as inputs into this CNN
model to predict night-time lights (NTL) with day-time lights (DTL). This is referenced as
the first-stage CNN model. After the first stage CNN model, the dimension of the relevant
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features are first reduced via principal component analysis (PCA). The resulting features
left from the PCA dimension reduction are extracted and are then used to train machine
learning models that will predict a binary asset-based poverty measure.

The reason for first training a CNN model of NTL predicted by DTL is to determine
the most relevant features of DTL in predicting poverty. Since, the data from DTL are large,
our aim is to reduce the dimensions of these images before using them to predict an actual
poverty index, which is a far smaller dataset. We will extract the most relevant features
that the CNN model finds in the training process and transfer these features to a related
problem in predicting poverty. We then merge these extracted features with the OPM data
and use a grid-search method consisting of several statistical and machine-learning models
to find the most accurate model that predicts a binary asset-based poverty measure. These
models include: Linear Support Vector Classification, Decision Tree Classification, Bagging
Classification, Gradient Boosting Classification, Random Forest Classification, ADA Boost
Classification, K-Neighbors Classification, and Gaussian naive Bayes.

The initial accuracy of the first stage CNN model is 0.69 in the year 2014, which
means that 69% of the NTL predictions from DTL satellite images were correct in categorizing
a household’s level of poverty. The initial accuracy of the machine learning model used to
predict the binary asset-based poverty measure from OPM data merged with the first stage
CNN features was .449. This means that the original model predicted poverty correctly
44.9% of the time. We aim to improve this model in 3 different ways: incorporating more
spectral bands, tuning the hyperparameters of the pre-trained CNN model predicting night-
time lights, and optimizing the model selection grid search for binary and continuous output.

The inputs of the current model only take in three main visible spectral bands that
include red, green, and blue. Spectral bands are captured image data that represent a specific
wavelength range. However, near-infrared bands that human eyes normally cannot observe
from the LANDSAT satellite images are also available and may have important features
that a CNN may be able to extract to use in predicting poverty. Our first improvement to
the model is incorporating more spectral bands. Each satellite image that we have has 7
different bands, where each band captures light from different parts of the electromagnetic
spectrum. The importance of incorporating different bands is that they can all provide
unique features that would be helpful in predicting poverty. Different combinations of bands
are helpful in measuring different things. For example, a combination of the Near Infrared
and the Red spectral bands is very good at picking up vegetation in satellite images. Our
goal is to incorporate all the bands so that we can capture all the important features we have
available. The difficulty in including all 7 bands is that the pre-trained Convolutional Neural
Networks (CNN) model that we use has been pre-trained on millions of RGB images and is
designed to only take up to 3 bands as input. We could train our own CNNs but this is time
consuming and data-intensive. Helber et al. (2017) found that inputting non-RGB bands
individually into these pre-trained CNNs still maintains fairly high classification accuracy so
we should be able to input all of the bands individually into our pre-trained CNN and still
get accurate results. So we will estimate a total of 5 models, one for the RGB values and 4
models for each of the rest of the 4 bands being plugged into the CNN model individually.
After estimating these models, we will extract the features from each one, combine them and
use those features to make predictions about poverty.

We will also tune the hyperparameters of the pre-trained CNN model to improve

7



the overall model accuracy. By changing the hyperparameters that are not learned by the
CNN model we seek to improve the performance of the predictions of the CNN model.
Changing the hyperparameters of the CNN will be an important part of the process of
improving our overall model. These hyperparameters are parameters that we provide the
CNN to control different parts of the learning process. While some machine learning models
may not have many hyperparameters, convolutional neural networks have several that affect
model performance. The initial RGB bands model extracts the last layer of a pre-trained
model named VGG16 and is fed into 1 dense hidden layer of 100 nodes with a Rectified
Linear Unit (ReLU) activation function and drop out rate of 0.3 to avoid overfitting. This
connects to the output layer where there are 3 nodes for our 3 night-time lights classes with
a softmax activation function- a type of generalized logistic function- to output probabilities
of whether each daytime image of land is associated with low, medium, or high nighttime
light radiance. This last output layer has 3 nodes, which is equal to the number of bins
that separate NTL values into 3 separate classes. Potential hyperparameter changes include:
making changes to the number of nodes within the dense layer, adding convolutional layers,
adding more hidden dense layers, changing the number of epochs, changing the batch size,
and changing early stoppage occurrence. Batch size here is a reference to the number of
observations within the training set. We hope that these adjustments will improve model
performance.

Finally, we aim to optimize model selection by expanding our machine learning
gridsearch models over a larger hyperparameter space. The best model of the original
gridsearch gives an accuracy score of approximately .449. This means that the original
model predicted poverty correctly 44.9% of the time. Having a more extensive gridsearch
will allow us to predict poverty with better perfomance metrics. We plan to accomplish
this by: including more parameters within the classifier models and expanding the ranges
associated with those model parameters. Although this may be time consuming, it is worth
pursuing to increase our accuracy, precision, recall, and F1 scores. In addition, the original
gridsearch is only prepared for a binary outcome, namely whether a household was in poverty
or not. Expanding the gridsearch to handle continuous outputs will allow us to observe where
a household falls on the financial health spectrum. Expanding the gridsearch for continuous
outputs requires us to add more regressor models including Lasso and ElasticNet, more
model parameters, and larger ranges for model parameters. The criterion for the continuous
gridsearch will be mean squared error (MSE), correlation, and R2 since we will be evaluating
a regression model with continuous output. Once we have tuned the gridsearch at the binary
and continuous levels, we will test how well our model can predict asset indices and individual
assets to evaluate if they are viable proxies for poverty.

4 Results
In this section we establish our main results where our new model helps us achieve

higher accuracy, achieve a continuous measure of poverty and also additionally estimate an
asset index using our model. We start off in our first subsection, with a description of the
specific changes we made to the CNN model to achieve a higher accuracy. In our second
subsection, Binary and Continuous Poverty Estimation, we show how we increase accuracy
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for the binary measure of poverty and achieve a continuous poverty measure. In our third
subsection, we include some additional findings including how we were able to use the model
to evaluate asset indices as proxies for poverty. In our final subsection, we incorporate a
robustness check of the CNN model.

4.1 NTL Predictions Using DTL Data

Table 2 below shows the changes that we made to the first stage of the model to
achieve better accuracy. Overall the model is similar to the original; however, we made 3
key changes that provided us higher accuracy. First, we expanded the number of bands
in our model from 3 (only RGB) to 7 bands including the different types of multispectral
imagery providing more features for the model to learn from. Second, we reduced our batch
size which generally results in more efficient models that run more quickly and have higher
accuracy. Finally, we reduced the early stoppage occurrence. All of these changes, helped
us make some improvement in the overall accuracy of the model as can be seen in Table 3
of the next sub-section.

Now that all 7 bands have been included, predictions for NTL values include single
band images. The pretrained model that the original RGB CNN model uses accepts only
three bands as an input. The workaround used to get single band image data working with
this model was to repeat the translated image data three times to mimic the shape of an
RGB array. The alternative is to create a CNN model from scratch which would sacrifice
the advantage of using a pre-trained model that has been trained with a large dataset. The
repeated single band data is not an RGB array and the effects of using single band data this
way on accuracy of prediction are not clear to us.

Table 2: First Stage Model Characteristics
Prior To & Following Contributions

Prior Following
Bands 3 7
Batch Size 500 32
Early Stoppage Occurrence 10 2
First Stage CNN predicts NTL from DTL

4.2 Binary and Continuous Poverty Estimation

After extracting the features from the updated First Stage model, we ran the
updated grid search for poverty on a binary scale. As shown in Table 3, we increased
the accuracy and precision scores but decreased the recall and F-1 scores. Our predictions
could potentially be used by the to determine which households to follow up with.
These predictions may also be used by the World Bank to guide the selection of eligible
households. Therefore, increasing accuracy is vital for the World Bank to allocate resources
efficiently and sufficiently to households in need. Our contributions were able to increase the
the accuracy score by .038 (from .449 to .487). In terms of accuracy, we are predicting poverty
at the binary level 3.8% more accurately than the original model. Though this may seem
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like a small increase, this could be quite a large number of households depending on sample
size. Given the nature of how these predictions will be used, any improvements should be
applauded. Overall, we are currently predicting the binary level of poverty correctly 48.7%
of the time. This is close to as good as a coin flip but not as accurate as a researcher would
want due to the influence these predictions will have. Therefore, this approach is not 100%
foolproof.

The original gridsearch was limited to handling poverty through a binary perspective:
either a household was in poverty or they were not. We expanded the gridsearch to a
continuous scale to evaluate where households land on the spectrum of financial health. We
implement the following machine learning models: Ridge, Lasso, ElasticNet, Linear Support
Vector Regressor, Decision Tree Regressor, Bagging Regressor, Gradient Boosting Regressor,
Random Forest Regressor, ADA Boost Regressor, and K-Neighbors Regressor. In addition,
we use performance metrics such as R2, mean squared error (MSE), and correlation. We
achieved an R2 of .0319, an MSE of 134.7657, and a correlation of .18174. Because R2 is one
of the most common goodness-of-fit measures, we analyzed this closely. According to the R2,
the model only explains 3.19% of the variance from the independent variables that predict
poverty. This is quite low, though it does not mean that our model is useless for continuous
measures of poverty. It’s possible that the nature of our data has a lot of unexplainable
variability, which causes low R2. However, this low R2 paired with such a high MSE and low
correlation shows that our model is not the best for predicting continuous levels of poverty.
This aspect of the model could definitely be improved upon and it may be helpful to add
another criterion such as the Akaike Information Criterion (AIC) to double-check for over-
fitting, though this doesn’t seem to be an issue currently.

The very basis of our approach has already been applied to countries such as the
Philippines, Rwanda, and Bangladesh (Kondmann and Zhu, 2020; Steele et al., 2017; Tingzon
et al., 2019). We expanded these methods by incorporating more spectral bands, tuning the
hyperparameters of the pre-trained CNN model predicting night-time lights, and optimizing
the model selection grid search for binary and continuous output. These contributions will
be externally valid because they are just adjustments of the original methods. It should be
noted that our methods struggled to accurately predict poverty at a continuous level, which
may or may not be externally valid for other countries. To increase external validity, the
pre-trained CNN could be trained on more images, potentially from other regions of the
world.
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Table 3: Machine Learning Model Performance Metrics
Prior To & Following Contributions

Binary Prior Following
Accuracy .449 .487
Precision .452 .465
Recall .964 .8922
F1 .616 .6121
Continuous
R2 N/A .0319
MSE N/A 134.7657
Correlation N/A .18174
Machine learning model predicts poverty on a binary and continuous level

4.3 Asset Index Estimations

We performed PCA on the OPM asset data and extracted the first component to
create an asset index. We used this asset index consisting of over 20 assets to create sub-
indices for amenities, appliances, transportation, and entertainment. We used these indices
as proxies for poverty. For example, a household that is well off will have a sanitation area
and/or a refrigerator, so households that do not have those assets are likely to be living in
poverty. We created a total of 10 asset indices using PCA:

1. Main Asset Index
2. Additive Main Asset Index
3. Amenity Asset Index
4. Additive Amenity Asset Index
5. Appliance Asset Index
6. Additive Appliance Asset Index
7. Transportation Asset Index
8. Additive Transportation Asset Index
9. Entertainment Asset Index
10. Additive Entertainment Asset Index

It should be noted that asset indices have limitations that may matter when using
them as a proxy for poverty (Vyas and Kumaranayake, 2006). Asset indices frequently reflect
long-run households that have acquired assets over time. This means that asset indices fail to
account for short-run and/or temporary shocks that effect financial health, such as COVID19.
Ownership of an asset does not account for the quality of an asset, which is directly related
to poverty. For example, a family with a brand new shower will likely have more money
than a family with a 30 year old shower that may have wear and tear. In addition, there
exists inconsistencies across sub-groups on what an asset signifies. For example, in some
regions having a bicycle is an indicator of wealth while in other regions a bicycle may be an
indicator of poverty. Finally, the additive asset indices are limited because they give equal
weight to assets that should not be equally weighted, such as a stove and a television.

In Figure 1 we plotted the correlation matrix between the asset indices and the
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poverty score (pscore). We then evaluated which asset indices would be appropriate proxies
for poverty. We can see that the additive asset (51%), asset (46%), and additive appliance
(45%) indices are most heavily correlated with poverty. We then used the continuous grid
search to see how well we could predict the 10 asset indices, though this paper only analyzes
the relevant asset indices determined by the correlation matrix. Analyzing only R2 from
Table 4, the explanatory variables (CNN features) fit the data better for the asset index,
additive asset index, and additive appliance index as opposed to the poverty score. Therefore,
at a continuous level, the explanatory variables (CNN features) explain more variation in
specific asset indices than the actual poverty score.

Table 4: Asset Indices Performance Metrics

R2 MSE Correlation
Main .0774 .412 .2785
Additive Main .0589 3.5188 .2511
Additive Appliance .144 .4369 .395

Additionally, we used the binary grid search to predict whether a household has an
individual asset or not. As can be seen in Table 5, the fan asset (including ceiling, table,
pedestal, or exhaust fans) achieved an accuracy of 0.9126, precision of 0.9184, recall of 0.9918,
and an F1 score of 0.9537. Therefore, it is possible that our model is able to predict whether
a household will have a fan or not with higher accuracy, precision, recall, and F-1 scores than
when we attempt to predict the poverty score. If we treat having a fan as a proxy for whether
a household is in poverty or not, then we would be able to predict poverty with significantly
better performance metrics than the original model. It should be noted that approximately
89.05% of households had fans. Therefore, approximately 10.95% of households did not have
fans and are considered to have been in poverty. This is quite smaller than the 30.75% of
households determined to be in poverty utilizing the survey poverty score. Therefore,
it is possible that the performance metrics from the fan asset are suffering from over-fitting.
Besides the fan asset, the majority of individual assets had accuracies close to 1; however,
the precision and recall scores dropped significantly towards 0. Given the nature of this
research, precision and recall are both important so we will not discuss these assets as a
potential proxy for poverty.

Table 5: Performance Metrics of Fan Asset

Accuracy Precision Recall F1
Fan Asset 0.9126 0.9184 0.9918 0.9537

4.4 Robustness Within Model

If this model were to have any changes, we want the model to be robust to the
changes and have consistent outputs. These changes can include different hyperparameters.
An example of hyperparameters that we changed to test for stable results was the batch
size value. We used a value of 32 for the batch size hyperparameter in the first stage CNN
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model. To check for robustness, we also used values like 64, 128, 256, 300, and 1000 when
estimating the CNN model. There were no obvious changes in outputs with these different
batch sizes. Stable prediction values are important for this early stage prediction process,
since the following stage predictions depend on the features of this CNN model.

5 Discussion and Conclusion
Combating poverty has always been an important focus for governments, policy-

makers, and researchers, but progress in decreasing worldwide poverty levels has slowed down
due to the COVID-19 pandemic. In this paper, we analyzed the government of
attempt to help people out of poverty through the cash transfer program. Previous
research on other countries’ programs suggest that traditional methods to measure poverty,
such as household surveys, are expensive and time consuming. Therefore, we extend state-
of-the art attempts to predict poverty in via an existing framework proposed by
Marty and Duhaut (2021).

Specifically, we perform a two-stage modeling process where stage 1 is composed
of a transfer learning approach using 5 VGG16 pre-trained CNN deep learning models to
predict nighttime levels with multi-spectral satellite imagery. In stage 2, we extract the
learned features from the CNN models and merge them with the household survey data.
This data was used as inputs in the extensive grid-search of supervised machine learning
models to predict binary and continuous asset-based poverty measures.

After implementing our changes, we achieved a 3.8% overall validated accuracy
improvement (44.9% to 48.7%) over the two-stage base model in predicting the binary asset-
based poverty measure. This improvement in accuracy translates to predicting about 128
more households correctly in terms of poverty or no poverty. Along with accuracy, we also
saw improvements in precision. Additionally, we modified the framework to accommodate a
continuous poverty measure (as opposed to only a binary poverty measure). Although the
regression performance metrics were not ideal (R2 of .0319), we do not have a comparison
model since the original model did not implement a continuous poverty model.
Overall, our changes to the model predicting a binary poverty outcome measure improved
poverty prediction. We can attribute these improvements to the addition of multi-spectral
bands via multiple CNN models as well as expanding the grid-search over a broader range
of hyperparameters. Overall, our findings confirm that this is still a challenging problem
to solve even with advanced modeling techniques, but our improvements are encouraging to
help motivate future research.

There are a few limitations or caveats to our findings. Our CNNmodels did not have
significant improvements in performance over the pre-trained models. This is a consequence
of several factors. First, the pre-trained model architectures are large and were trained on
over millions of images. Due to keeping nighttime light bin classes balanced, we needed to
sub-sample from the majority NTL bin classes which removed many images from Landsat
and VIIRS. Our largest input data to the CNNs only contained approximately 40,000 satellite
images. This is not enough input data to make significant improvements to the pre-trained
models. Secondly, even if we could use hundreds of thousands of images to train deeper
CNN models than the pre-trained VGG16 model, it is extremely computationally expensive

13



to train all 5 CNN models on large set of images. Additionally, it should be noted that
we decreased the recall score which effectively decreased the F-1 score. A decrease in recall
score implies that we increased the amount of false negatives. Therefore, the updated model
incorrectly classifies impoverished households to be financially stable at higher rates than
the original model. It is up to the discretion of the World Bank and the government of

to decide which performance metrics are most important to the success of the
program

Given our work, future research should continue to use data science approaches in
predicting poverty levels, as opposed to the strictly traditional methods discussed earlier.
For researchers with access to high computing power, we recommend to use a similar two-
stage modeling framework. Preferably, one that would gather hundreds of thousands of
daytime satellite imagery and input not just RGB bands, but other spectral bands such as
infrared or ultraviolet light into several CNN models to predict levels of nighttime light.
Then for each observational unit where poverty is measured (household or neighborhoods),
use many different data sources (household surveys, Facebook, mobile data) along with
the features learned from the CNN models to predict a known poverty score via machine
learning models in the 2nd stage. This approach currently is the standard for attempting
to accurately measure poverty and future research can expand upon this by implementing
similar techniques on additional, richer data sources.

Attribution Statement:
Laniah contributed to the expansion of the binary continuous grid search, the creation and
analysis of the asset indices, and analysis of individual assets as potential proxies for poverty.
Taymour researched different methods of incorporating multispectral imagery into the model,
edited code for prepping the CNN and data, and prepped CNN and data for
the CNN model. Michael prepped the CNN and data, researched using pretrained
CNN models for single band images, and modified the CNN feature extraction portion of
the model to work with single channel models. Rus added 4 additional convolutional neural
network models for single channel bands, edited the code to merge all extracted features
from the 5 CNN models with the survey data, edited the PCA code to run on the larger
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Figure 1: This chart displays the correlation between different asset indices as well as the poverty
score
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