

Using satellite imagery, transfer learning, and survey data to predict poverty in Southwest Asia

An expansion of the World Bank's *Predicting Poverty from the Sky* (2021)

Laniah Lewis, Taymour Siddiqui, Michael Chan, Rus Adamovics-Davtian September 3, 2021

California Polytechnic State University

- 1. Introduction
- 2. Data Summary
- 3. Problem Description
- 4. Results
- 5. Conclusion
- 6. Acknowledgments

Introduction

- More than 9.2 percent of the world lives in extreme poverty on less than 1.9 dollars per day.
- Measuring poverty allows us to target resources where they are needed most and most effectively reduce poverty.
- Much new research has focused on how satellite imagery can be used as a cheap way to achieve updated measures of poverty, as opposed to, traditional methods like surveys.
- Our paper focuses on how we can make these models more accurate and seeing how generalizable the methods are to a new geographic area.

What is a Neural Network Model?

https://www.astroml.org/book_figures/ chapter9/fig_neural_network.html

What is a Convolutional Neural Network Model (CNN)?

https://www.cs.toronto.edu/~lczhang/aps360_20191/ lec/w04/arch.html

Basics of our approach: Transfer Learning

- Transfer Learning- a model trained on one task is re-purposed on a second related task.
- Transfer learning allows us to do advanced deep learning techniques without having millions of images, a lot of time, or deep expertise.
- We make use of a pre-trained CNN that is able to learn from the satellite data that we have.
- The CNN takes in the satellite image data that we have and selects features that are helpful in predicting nighttime lights.
- The features are then used to predict poverty using machine learning.

The 3 main questions we hoped to answer with our research were:

- Can our improvements to the model achieve higher accuracy in predicting poverty on a binary level? The improvements being incorporating multispectral imagery, expanding our gridsearch, and tuning the parameters of the model(more on this later)
- 2. Can our model also be used to accurately predict poverty on a continuous level?
- 3. Can our machine learning model be used to predict other economic variables related to well-being besides poverty?

Literature Review: Origins of the method

- Cash transfers are one of the most common methods used to fight poverty in developing countries.
- However, these cash transfer programs have been shown to be most effective when impoverished groups are identified correctly.
- It is also difficult for organizations to measure the long term effects without this method.
- (Henderson2012) described how economic activity can be measured from space and introduced US Air Force Weather Service satellite night-lights data as a useful proxy for economic activity, providing a new way to measure poverty

Literature Review: Development of the method

- (Jean2016) and (Yeh2020) have shown the validity of this method in predicting poverty in African Countries.
- (Helber2017) tested the accuracy and effectiveness of incorporating multi-spectral imagery into pre-trained neural networks and found that it maintained fairly high classification accuracy.
- Recent research discussed by (Burke2021) focused on creating powerful machine learning models that use satellite images as inputs to predict wealth indexes.

Data Summary

Daytime light intensity

LANDSAT 8 Satellite Image Data

- 50,583 48x48 Daytime Images
- Red, Green, and Blue (RGB) Bands for standard images
- 4 different non-visible spectral bands also available

- Visible Infrared Imaging Radiometer Suite (VIIRS) images
- Used k-means clustering to discretize night time radiance into 3 bins
- Over 1.8 million averaged night time light radiance values in 2014
- Down sampled the two majority classes to size of minority class
- Each bin contains 16,861 nighttime light values for a total of 50,583 values

- Panel data with anonymized household ID
- Detailed demographic information available. 186 columns of information.
- Geospatial data for exact home locations of participants.
- Poverty index and asset variables. For example: Does this household own a television, fan, refrigerator, etc.

Table 1:

Survey Data, Mean Statistics

Age Statistics Per HH	Oldest Person	Youngest Person
	55.72	3.6
Localities	Urban	Rural
	25.43%	74.57%
Unconditional Cash Grant	Proportion of Recipients	Proportion of Non-Recipie
	%	%

HH = household.

Problem Description

Original Model (Pre-Trained VGG 16)

Layer	Feature Map	Size	Activation	Туре
Input Image	1	48 X 48 X 3	Relu	VGG 16
2 X Convolution	64	48 X 48 X 64	Relu	VGG 16
Max Pooling	64	24 X 24 X 64	Relu	VGG 16
2 X Convolution	128	24 X 24 X 128	Relu	VGG 16
Max Pooling	128	12 X 12 X 128	Relu	VGG 16
3 X Convolution	256	12 X 12 X 256	Relu	VGG 16
Max Pooling	256	6 X 6 X 256	Relu	VGG 16
3 X Convolution	512	6 X 6 X 512	Relu	VGG 16
Max Pooling	512	3 X 3 X 512	Relu	VGG 16
3 X Convolution	512	3 X 3 X 512	Relu	VGG 16
Max Pooling	512	1 X 1 X 512	Relu	VGG 16
Global Max Pooling	512	512	Relu	VGG 16
FC Flatten	512	512	Relu	Custom
FC Dense	100	100	Relu	Custom
Dropout	100	100	Relu	Custom
Output	3	3	Softmax	Custom

Original Model Performance

Incorporation of more spectral bands

- Spectral bands are captured image data that represent a specific wavelength range(RGB,Infrared,etc).
- Incorporating all spectral bands that we have available, capture all of the important features that we have available in our data.
- To incorporate all bands, we estimate a total of 5 CNN models, one for the RGB values and 4 models for each of the rest of the 4 bands being plugged into the CNN individually.
- We then combine all the features from these 5 CNN models and use machine learning to predict poverty using these features.

Hyperparameter adjustments of pre-trained CNN model predicting night-time lights

- Froze Pre-Trained CNN Layers
- Experimented with number of nodes, number of hidden layers, drop out rates, batch normalization, optimization function, type of pre-trained model, batch size, metric to optimize
- Original model architecture worked best

Grid Search Optimization with Machine Learning Models

- Expanded binary grid search parameters, ranges of model parameters
- Created grid search for continuous measures of poverty regression models, model parameters, ranges of model parameters

Results

Inputs	Accuracy	Precision	Recall	F1-Score
Band 1	66.5 %	68.3 %	66.9 %	66.3 %
Bands 2,3,4 (RGB)	68.8 %	69.0 %	69.2 %	68.8 %
Band 5	60.9 %	61.3 %	60.6 %	61.0 %
Band 6	61.6%	65.4%	61.8%	61.1%
Band 7	64.5 %	64.4 %	64.4 %	64.4 %
* Trained on ~40,000 DTL images to predict ~10,000 NTL				

Table 2: Machine Learning Model Performance MetricsPrior To & Following Contributions

Binary	Prior	Following
Accuracy	.449	.487
Precision	.452	.465
Recall	.964	.8922
F1	.616	.6121
Continuous		
R2	N/A	.0319
MSE	N/A	134.7657
Correlation	N/A	.18174

Machine learning model predicts poverty on a binary and continuous level

Correlation matrix between poverty score and asset indices

Table 3: Asset Indices Performance Metrics

	R2	MSE	Correlation
Main	.0774	.412	.2785
Additive Main	.0589	3.5188	.2511
Additive Appliance	.144	.4369	.395

Table 4: Performance I	Metrics	of Fan Asset
------------------------	---------	--------------

	Accuracy	Precision	Recall	F1
Fan Asset	0.9126	0.9184	0.9918	0.9537

• 10.95% of households did not have fans (10.94%)

- For our model to be robust, we want consistent outputs when making changes.
- Hyperparameter of batch size value was changed to test for stable results.
- 1000, 64, 125, 256, and 300 were used and the CNN model did not seem to be sensitive to these changes.
- Which is good! Everything depends on this first-stage model.

Conclusion

- COVID-19 halted the progress in decreasing poverty levels
- Extended current research using 2-stage modeling approach to predict poverty
- Achieved a 3.8% overall validated accuracy improvement (44.9% to 48.7%) in predicting binary measure of poverty
- Modified framework to accommodate predicting a continuous poverty measure ($R^2 = .0319$)

- No significant improvements to CNN models compared to pre-trained base model
- Limited image training data (\approx 40,000) due to sub-sampling and keeping balanced NTL bins
- Extremely computationally expensive

- Continue to use data science approaches in predicting poverty levels and not strictly traditional methods
- Implement similar two-stage modeling technique on additional, richer data sources
- Have access to higher computing power
- Other measurements of well-being

Policy Implications

٠

- $\cdot\,$ Other conditional and unconditional support programs
- Use when surveying is unfeasible.

Acknowledgments

- Professor Katya Vasilaky
- World Bank team member Rob Marty
- World Bank team member Alice Duhaut
- California Polytechnic DxHub

Questions?