
GSE 580 Distribution of Price Changes: API Data

Brendan Hoang ∗ Ian Donovan † Trevor Luenser ‡

Russell McIntosh §

June 10, 2021

Abstract

Historically, it has been difficult to capture the degree and frequency that prices
change. Traditional methods, such as the use of scanner data, are presented on a
weekly or quarterly basis and are often burdened by high costs in both time and wages.
In this paper we gather prices from a major online retailer for thousands of items
daily to analyze price stickiness (the change in price, per item, over time) with a much
higher degree of frequency. We measure price stickiness by matching items over time
and measuring the difference in price of the item from the period immediately prior.
Overall, our results indicate that online prices can be used to accurately measure prices
over time, and that the distribution of price changes becomes more bi-modal over time,
confirming the online price results in (Cavallo, 2015).

JEL: C9
Keywords: GSE580, PPP, Purchasing Power Parity, Web-Scraping, Price Data.

1 Introduction
Price indices represent an important tool to both private and public sectors; from a business
planning a product’s pricing to NGOs measuring global purchasing power parities. Measuring
prices accurately is a significant concern since poor information can lead to poor investments.
While price collection has traditionally occurred in the field, or more recently through scanner
data, new codes and the availability of online price data offer an enticing new direction for
price index research.

Predominant issues in the collection of price data include the temporal and fiscal
constraints of collection: collection in the field takes considerable time and person-hours,
and scanner data may only be available as a weekly aggregate behind large pay-walls. Online
data is cheaper, easier, and far faster in its availability. The ability to collect data on a daily
basis offers another benefit: measuring price stickiness in terms of days rather than weeks.

∗Cal Poly, Graduate Student, Department of Economics (email: bhoang09@calpoly.edu)
†Cal Poly, Graduate Student, Department of Economics (email: idonovan@calpoly.edu)
‡Cal Poly, Graduate Student, Department of Economics (email: tluenser@calpoly.edu)
§Cal Poly, Graduate Student, Department of Economics (email: rumcinto@calpoly.edu)

Changes to current notions on price stickiness can have drastic policy implications. The
idea of prices being "sticky" is used to justify arguments that "changes in the money supply
have an impact on the real economy, inducing changes in investment, employment, output
and consumption" (Wang and Wright, 2016). Stickiness impacts indices by misrepresenting
price changes via current methodologies. It is generally accepted that price stickiness is
uni-modal, with prices largely remaining unchanged or showing little variation. Our own
research, following that of (Cavallo, 2015), indicates that prices show a bi-modal distribution
with slight increases and decreases that become more pronounced over time (2).

1.1 Literature Review

Past literature has discussed issues with the practice of using simple price data indices, such
as the popularized Big Mac Index, to measure global price indices. Much of the goods
contained in these indices cannot be traded internationally or contain incomparable service
components, ultimately leading to issues in accurately comparing prices. (Taylor and Taylor,
2004). Despite these issues, price index estimates are used to analyze the effects of national
culture such as individualism/collectivism, uncertainty avoidance, and economic capacity.
Moreover, analysts can offer insight to retailers and mall managers on how to address
variations in consumer behavior through price index estimation. (Gilboa and Mitchell, 2020).

One of the biggest issues surrounding the current large-scale price-index collection
process is the enormous amount of data required to create accurate calculations. The
International Comparison Program (ICP) collected price data for thousands of goods across
146 countries in 2005. The enormous amount of data that must be collected poses a complex
problem with no single solution (Deaton and Heston, 2009). In addition, the data collected
fails to account for transportation costs and government taxes associated with each product
in each country (Pakko and Pollard, 2003).

For example: collecting data for purchasing power parity (PPP) calculations is a
cumbersome process that results in estimates being published years after the data has been
acquired. The World Bank’s International Comparison Program published PPP estimates
for 2017 in 2020 (Fu and Nada, 2020). A three year lag in the reporting of PPP estimates
makes it difficult for decision makers to create relevant policies regarding a countries economic
well-being. To give future decision makers up-to-date price data, researchers will need to
make use of new technologies and methods to streamline the data collection process.

We discuss potential methods to improve the data collection process (e.g. Web scraping).
Web-scraping price data holds high desirability for a number of reasons, but the frequency of
collection is a key aspect of potential benefits. This may be most exemplified by the research
of several National Statistics Offices on new methods of price data collection, such as the
use of web-scraping supplemented by survey responses (Bhardwaj et al., 2017) and the use
of web-scraping supplemented by "copy-and-paste" techniques of online price data (Polidoro
et al., 2015). These methods have also been used to gather data in developing nations where
data collection is more difficult or where countries opt-out of the World Bank International
Comparison Program.

Web-scraped price data has proven viable for similar economic estimation techniques. A
significant issue with price data gathered online is its validity towards replicating established
economic models. Over the last decade several authors have shown that such data is indeed

2

valid for use in predicting dis-aggregated consumer prices indices with a generally high rate
of prediction (Powell et al., 2018). Alberto Cavallo (Cavallo, 2015) has also shown how
scraped data can overcome time-averages and imputation method biases introduced through
other data collection methods, specifically scanner and consumer price index data. These
contributions to the literature on web-scraped prices have established new methodologies for
supplementing, and sometimes overcoming, traditional price data applications.

Without access to specific products presented in Cavallo’s "Scraped Data and Sticky
Prices" (Cavallo, 2015) (due to the use of proprietary data) we seek to replicate those data
with a subset of products, based on the categories presented in the Cavallo data set. Our
data come from daily scraped prices for 78 product-queries through Walmart’s online retail
store. Queries represent the search term used in the website’s search-bar. These data are
focused on products within the United States, in terms of US Dollars. By using data across
several industries and categories, we will study industry-level price variation; and due to the
increased frequency of collection, we expect more price volatility than that seen from lower
frequency (per month) data.

There are many benefits of Purchasing Power Parity estimates, but data collection and
presentation is a time-consuming process with several barriers. Advances in computing power
and widespread data availability make the prospect of providing near real-time price index
estimates very alluring. While collection of expenditure data is beyond the scope of this
paper, the collection of prices across several products over time can open a pipeline towards
future developments in price index estimation. Such data can allow for the formulation of
consumer price indices estimates, which are conceptually similar to PPP estimates, with
focus on the temporal and spatial changes in price, respectively (??, Rao). By analyzing
the "stickiness" of prices per product over time we can provide a platform from which to
analyze concepts relevant to purchasing power parities such as the effects of externalities on
individuals’ purchasing power across time and space.

In Section 2 we will discuss the data presented by Alberto Cavallo in "Scraped Data
and Sticky Prices" (Cavallo, 2015), as well as our own results via the collection of prices
from Walmart. The 3 section will describe the problems and proposed solutions that we
encountered along the way. Section 4 will discuss the results of our findings with respect to
the Walmart price data. Finally, the 5 section will tie our data and analysis together and
explain gaps and limitations, as well as avenues for potential future analyses.

2 Data
The data in "Scraped Data and Sticky Prices" (Cavallo, 2015) are collected from the websites
of 8 different large retailers from 5 different countries (Argentina, Chile, United States,
Brazil, Colombia). Table 2 describes the database of prices that Cavallo (2015) uses for the
US and the 4 other Latin-American countries studied. There are over 60 million daily price
points that are used. Each of the 4 USA datasets represent prices from either a supermarket,
convenience store, or electronics store. The datasets for the remaining countries all represent
prices from a supermarket.

Observations in the data set are collected on a daily basis, each observation represents

3

Table 1: API Data

Google Shopping WalmartAPI (Abbreviated)
Queriesa 5 18
Locationsb 21 1
Observations (daily) 2100 677

aqueries are strings acting as search-terms in the search-bar
blocations are strings used to reference a geographical server from which the search takes place

the price of a particular good given by the category indicators on a particular day. The fewest
number of observations of any country is the 4 million from Colombian supermarkets while
the largest is 11 million for USA department stores. The fewest number of unique products
from any countries also belong to Colombia and USA department stores is 4 thousand and
the largest number was 94 thousand.

The Cavallo (2015) data were collected via a program set to scrape prices at a set
time daily. A later version of this paper explains, generally, that several programs were
used to scrape data at a set time, collating each observation as an individual product per
day, parse the data into useful information, and store observations into a database in the
format of one entry, per-product, per-day (Cavallo, 2015). The products are given unique
product IDs to reference and group over time, as well as product categories that can be used
to analyze changes at the product-category level. Our data are collected similarly, using
Google’s SerpAPI application, which aggregates prices from Google Shopping search results
in 21 countries for 5 search-query parameters, and collects the first 20 entries, to 2,100
observations per day. We also used the SerpAPI application to pull data from Walmart
to collect price, title, product identifiers, and various metadata. An abbreviated version
of the code (offering a limited query parameter) uses 18 search-query strings, totalling
approximately 675 observations per day. An expanded version of the Walmart API uses
78 search-query strings to search for products, pulling approximately 3,000 observations per
day. Under ideal conditions we will run the API code for a considerable period of time to
analyze long-term trends in the price data, how it compares across countries, and compare
the results to both Cavallo’s CPI stickiness results (which analyzed price-percentage-changes
over time) and PPP estimates.

There are eight unique data sets: USA1, USA2, USA3, USA4, Argentina, Brazil, Chile,
and Colombia. USA1 contains 9 million daily price records for 24 thousand items from
supermarkets in the US. USA2 contains 10 million price records for 94 thousand items from
department stores in the US. USA3 contains 4 million price records for 22 thousand items
in drugstores and convenience stores in the US. USA4 contains 5 million price records for
30 thousand items in electronics stores. The remaining data sets record price data for items
in supermarkets exclusively. Argentina contains 11 million price records for 28 thousand
items. Brazil contains 10 million price records for 22 thousand items. Chile contains 10
million price records for 24 thousand items. Colombia contains 4 million price records for 9
thousand items.

There are implicit biases associated with web-scraped data. Cavallo (2015) specifically
references three primary disadvantages of scraped data: a much smaller representation

4

Table 2: Database Description (Table 2 of Cavallo (2015))

US Argentina Brazil Chile Columbia

Retailers 4 1 1 1 1
Observations (millions) 28 11 10 10 4
Products (thousands) 172 28 22 24 9
Days 865 1,041 1,026 1,024 992
Initial Date 03/08 10/07 10/07 10/07 11/07
Final Date 08/10 08/10 08/10 08/10 08/10
Categories 49 74 72 72 59
URLs 16,188 993 322 292 123
Total missing observations (%) 37 32 26 33 22

Retailers: The number of retailers in each country from which price data was scraped
Observations: Total number of price observations
Products: Total number of unique items in the data
Days: Total number of days that data was scraped in each country
Initial Date: Initial date of price-data scraping
Final Date: Final date of price-data scraping
Categories: Total number of COICOP categories into which products fall
URLS:
Total Missing Observations: Percent of observations that are missing price data

of product categories, sources being limited to large multi-channel retailers, and lack of
information on quantities sold (Cavallo, 2015). He also describes the second point as
potentially falling victim to sampling bias. For our own data, sampling bias represents
a significant concern due to search-engine-optimization, paid advertising, and the weight
given to product views and ratings.

Reporting bias and exclusion bias go hand-in-hand with the inability to collect data
from local markets, small retailers, and other potential sellers whose data is not readily
available compared to major online retailers. Only a limited number of countries have been
represented in either Cavallo (2015) or our own data. In our own case, we are limited to
countries that are available in Google’s search API, and countries in which Walmart operates.
More generally, it will often be difficult to acquire data from nations such as Iran, North
Korea, or Myanmar who restrict or sever access to digital marketplaces.

As previously mentioned, excluding a large number of countries in our data sample
may lead to biased price comparisons (caused by sampling bias) when extrapolating the
web-scraping data collection methods to more countries and products. These potential biases
may wane as purchasing habits across the world trend towards larger retailers and developing
countries further digitalize.

There are likely to be some unavoidable consequences from using the Cavallo (2015)
data as the prices from the Latin American countries are all derived from supermarkets,
and therefore only represent a basket of goods that can be bought at such a retailer. This
resulting exclusion of a significant subset of goods and services provided by smaller (and
potentially more regionally popular) retailers may lead to difficulty in arriving at accurate

5

price comparisons. Additionally, the Cavallo (2015) paper mentions that the majority of
transactions are still handled offline in many countries, making online prices not a fully
accurate depiction of what people are actually paying for goods in the respective countries.
Moreover, residents of other countries likely have varying purchasing habits in terms of where
they buy goods, raising potential room for concern caused by our focus of big name retailers.
Our original data suffers the same potential for harm as it is limited to a necessarily small
sample of goods and countries.

3 Problem description
In past literature on price stickiness, authors have discussed how sampling and measurement
error affect price statistics. In our paper, we hope to highlight common associated with
measurement error in the context of calculating the price changes. These measurement
errors can negatively impact accuracy in common and influential price indices, including
Consumer and Producer Price Indices (CPI) and Purchasing Power Parity (PPP). Price
data collection for price index estimates has proven to be a strenuous task due to difficulties
in extracting the high volume of data required to draw meaningful conclusions.

3.1 Cavallo Replication

Cavallo has explored issues such as measurement error in price data collection, and will
partially replicate Cavallo’s analysis from (Cavallo, 2015) in which he compares online price
data to scanner data to evaluate biases on measuring price stickiness. Notably, Cavallo
shows that although daily online data captures more price fluctuations, it is found to be
stickier than scanner data when evaluated at the same time interval. He attributes this
to the sampling bias present in scanner data caused by supplemental time averages and
imputations that in turn falsely reduces the duration of price changes. Building upon this,
we will be evaluating price changes utilizing an API as opposed to web-scraped online price
data or scanner data. Through a density plot visualization, based upon Figure 1 in Cavallo’s
paper, we will be able to observe the variation of price changes between our shorter-termed
data set of Walmart’s online prices and Cavallo’s longer-termed data set of online US prices
. Additionally, we will subset Cavallo’s online price data to a 14 day period and create a
similar plot to compare his results if his time horizon was the same as ours. We will also
include a similar summary table to Cavallo’s Table 2 in order to provide contrast between
the two data gathering methods (API and Web-Scrape), as well as display the depth of our
collection. In addition to providing insight towards the effectiveness and feasibility of API
derived price data of a single large retailer, our method will also show its applicability in
contributing to short term analysis of price changes.

3.2 Difficulties

It is difficult to derive a feasible data collection method that is both accurate and efficiently.
Historically speaking, analysts have encountered some difficulties when certain scanner prices

6

could not be expressed in whole cents. The issue of "fractional prices" will be addressed in
the paper by the usage of intermediary data collection methods.

There are differences in purchasing preferences and behaviors across, and even within
regions. As we have seen in our own data collection, prices are often difficult to acquire,
or may be so variable as to make accurate product pricing difficult to ascertain without
related sales data. Differences in item quality can potentially be significant across markets.
Unique product identifiers, such as SKU and UPC codes, can change over time leading to
a comparison of different products, or continuing collection for the same product data, to
become inaccurate. By the time the data has been used to create estimates for indices such
as Purchasing Power Parity or consumer price indices, it may already have become outdated.

3.3 Overview of Solutions

By using prices pulled fromWalmart’s API, we overcome the need to use intermediary sources
of data collection, such as scanner data and in-person records. Walmart’s online prices are
standard across regions within the United States, overcoming concerns about regional pricing
differences. Large collections of daily data allow us to collect prices from a large number
of items per query, allowing us to disregard observations without price information. In
trials, a negligible number of observations have been lost (performing the initial test on data
collected May 8, 2021, 1 of 2852 observations did not have price data, or 0.035063113% of
observations). Items sold by Walmart online are also standardized across regions, negating
the potential for quality differentiation across regions.

Having access to two forms of unique product identifiers and product titles allows us
to potentially compare three identifying labels to ensure products are the same over time,
forgoing issues such as changing SKU or UPC codes.

We seek to increase the availability and quantity of price data by running data collection
code on a daily basis.

We begin our approach to these issues by utilizing python to access Google’s SerpAPI.
Our basket of goods contains 11 categories of items that are common across countries 1

The prices are gathered from Google’s SerpAPI platform, and are accessed through
Walmart’s online store using the Walmart engine. Our collection of real time daily prices
will allow us to create a data set that can be used to analyze price changes across time at
a higher frequency than that of CPI or scanner price data. Automating the data collection
in this fashion negates the issue of letting the data become outdated during analysis. Being
able to work with current price data will create a significant advantage in overcoming the
prior mentioned difficulties in price data collection.

3.4 Data Collection Method

The code in Appendix A - Appendix F shows how the data were collected from Google’s
SerpAPI platform using the Walmart engine. An abbreviated version was used to start
collecting data on April 28, 2021, while an expanded version (including several new queries)

1Foods,Drinks,Home Improvement,Home and Furniture,Toys and Games,Dry Goods,Electronics,Clothing
and Accessories,School and Office,Health,Entertainment

7

was started on May 5, 2021. Minimal changes were used to gather data from Google Shopping
through the SerpAPI Google Search engine.

After collecting and cleaning the price data we calculate average price changes for each
day in the data. We begin by calculating the average price for each day, next we take the
average price of the following day and subtract off the current price before dividing this
quantity by the current price. Using this formula we are able to derive daily average price
changes for online products in the US. Finding a distribution of price changes that is similar
to the distribution found by Cavallo, would provide evidence to support the hypothesis that
online prices can be used to supplement physical price data.

4 Results
We begin by comparing the price distribution found by Cavallo in Figure 1 to the price
distribution we obtained with our aggregated data in Figure 3. Immediately, we see that
there is a higher concentration of price changes around 0 in our distribution when compared
with Cavallo’s. However, comparing a subset of Cavallo’s data, from April 28, 2010 to May
23, 2010 to coincide with our own data, we see a similar distribution of price changes across
categories. Immediately noticeable is how the increased number of categories and products
flattens the density compared to our own results. The maximum price decrease in our sample
was -10% while the maximum price increase was about 3%. When comparing the variability
of the two distributions we see less variance in our sample and a left skew. When compared
with Cavallo’s results, our aggregated price data more closely matches the CPI imputation
data rather than the online price data. To make a more accurate comparison to Cavallo’s
data, we also plot the average price changes for a 14 day sub sample from May 1st, 2008
until May 14th, 2008. The distribution of price changes for the sub sample can be seen in
Figure 4. Comparing the sub sample distribution with the distribution from the API data
we can see that the sub sample has less variance and has more observations around 0. While
the size of the price changes are not very similar the shape of the distributions are fairly
comparable considering this is only looking at a 14 day window.

We find the differing distributions of price changes between the scanner and online data
to be somewhat unsurprising. It is likely that scanner data creates additional small price
changes that smooth the distribution of price changes and therefore provides misleading
results. Prior literature had shown price changes to largely be uni-modal around zero, but
Cavallo argues that the true distribution is bi-modal with a positive and negative mode.
Figure 2 shows a subset of Cavallo’s scraped prices compared to both a simulation of the
data averaged by week and scanner data obtained by AC Nielson for the same retailer.
Cavallo notes that the weekly averaging of prices in the simulated and scanner data reduces
the affects (and visualization) of large price changes. Coupons and loyalty cards may act
to further smooth the price changes by providing consumers with lower prices than those
posted, affecting the scanner data but not scraped prices. Visually, we see price change
estimates inaccurately moved from the tails of the distribution to the center as a result of
the smoothing inherent in scanner data. We should also note that prices collected from our
own API do not account for the possibility of temporary changes in prices due to a range
of factors, such as overstocking, expirations, promotions, or new product launches. Several

8

observations in our data indicate massive changes, such as discounts in medicines, toys, and
books that may be explained by expiration, new models, or lack of demand, respectively,
or, drastic increases in prices that are not so easily explained. It is difficult to capture
the external validity of these findings. Returning to purchasing power parities, it would be
necessary to capture these data across borders; the Walmart price data focuses on US prices
at a macroscopic level. Time is also a factor that we hope to expand in the future; current
events, such as mask mandates and social distancing orders, likely play a large role in daily
price changes specific to region. Walmart, one of the largest retailers in the world, let alone
the US, may not capture how prices change for smaller retailers, especially those limited to
intra-national or intra-regional markets.

4.1 Depth of Raw API Data

Table 3: Walmart API Data Summary

Walmart Data (US) Value

Start Date 4/27/21
End Date 5/22/21
Days 23
Total Missing Observations (%) 6.8
Unique Products 5412
URLS 8501
Observations 53905
Unique Categories 11

Table 3 presents the raw results of our data collection method across all product
categories. There are 6.8% of the 53,905 total price observations missing due to either
items being out of stock or flaws with the Walmart API. Examining this further, we found
that these price absences do not last for more than a few days. Compared to Cavallo’s
web scraping method, our usage of an API has produced less missing observations (by
percentage of total observations). With more time to collect data however, the overall
missing observation percentage may more closely align with Cavallo’s results. In table 4 we
further examine our sample divided into 5 sectors based on those commonly used for the
creation of price indices. Most notably, the Food and Drinks sector has 20.53% of its total
observations missing, possibly due to supply shocks at the time of our data collection.

Even with a few weeks and roughly 55,000 observations sampled, we were still able
to witness noticeable price changes that could be represented graphically in Figure 2. Our
ability to derive results of this fashion should be viewed as a positive in terms of evaluating
the feasibility of our API data collection method.

9

Table 4: Summary by Sector (Walmart API US)

Food/Beverages Electronics Household Goods Clothing Health
Average Price (Dollars) 15.06 293.47 58.79 16.15 13.31
Unique Products 1307 422 1236 1007 309
URLS 2054 573 2008 1253 842
Total Missing (%) 20.53 0.0 1.33 .21 .07
Observations 13381 4335 14110 5137 4248

5 Discussion and Conclusion
Accurate price data is crucial for comparing economic capacities between countries with
different exchange rates via price indices, but this data is not easily obtainable and often
requires methods to supplement missing data. The process of gathering price data typically
involves a significant amount of manual data collection through inflation indices and scanner
data. Data sets collected via these means can lead to measurement errors and biases due to
imputation methods used to fill in price gaps. This issue, as presented by (Cavallo, 2015), is
addressed by using online data sources to increase the accuracy in measuring price stickiness
and creating price indices. Moreover, online price data allows researchers to create insight
on current price data, as opposed to price data that has potentially already become obsolete.
Using these methods, researchers can create customized data sets to more effectively analyze
price stickiness across products, sectors, and countries. (Cavallo, 2015) emphasized that
previous empirical studies using common indices often include imputed prices as substitutes
for temporarily missing products. By collecting online data through SerpAPI and analyzing
the resulting distributions, we find that using online data to measure price stickiness yields a
bimodal distribution that differs from the scanner data distribution. We argue this is due to
our API collected data being free of imputation methods or averaging that would otherwise
cause price change estimates from the tails to be moved towards the center of the distribution
curve. In the short run however, we see a more unimodal distribution. This may be the case
that prices are more resistant to change in the short run, as firms can incur expenses when
changing prices(menu costs).

The results from (Cavallo, 2015) indicated that previous literature on price stickiness
used scanner and CPI data to fill out missing data points. In this paper, we used online
daily price data from a large retailer accessed from Google’s serpAPI platform to run search-
query terms and collect weekly product prices from Walmart. We study the magnitude
of price changes to compare the resulting price data distribution to that from (Cavallo,
2015). We implemented R and Python scripts to parse and sort the scraped observations
and create graphical representations. Overall, our findings suggest that data collection
methodologies stemming from online data as opposed to scanners can increase the accuracy
of price stickiness analyses - online data is stickier than scanner data, and prices are stickier in
the short run than long run. Compared to the data sourced from scanners, the online data
yields a distribution that more closely resembles a bimodal distribution of price changes.
Examining the beginning of our data collection, we find there to be a more unimodal
distribution that is potentially due firms resisting price changes. As a result, our method
suggests that data from online sources such as APIs can reasonably be used in international

10

price indices to compare baskets of goods and purchasing power parities.
Compared to (Cavallo, 2015), our model did not have access to scanner data. In

addition, our data lacks the scope of time, daily observations, and total categories, all of
which can be remedied with continuing work. Broader limitations are the lack of information
regarding product expenditures necessary to calculate price indices, as well as price data from
other countries. Although the data provide significant steps towards the calculation of indices
that do not rely on expenditure data, we still seek data from foreign marketplaces such as
Mercado Libre and Jumia. Access to such market data would prove invaluable to future
work on price measurement.

Our research poses several possibilities for future empirical studies regarding price
stickiness in the monetary transmission mechanism. We found that using API data could
feasibly improve the efficiency of estimating purchasing power parities. Through our research,
we deduced that previous reports and literature underestimated price stickiness due to
sampling measurement errors. However, our paper presents numerous avenues for future
study, such as the effectiveness of daily online price data in informing policy makers on capital
allocation decisions. With the potential ability to create accurate daily price indices, global
markets would be able to be intently monitored constantly and thereby more accurately
measure exchange rates.

11

References

Bhardwaj, H., T. Flower, P. Lee, and M. Mayhew (2017). Research indices using web scraped
price data (august 2017 update).

Cavallo, A. (2015). Scraped data and sticky prices. National Bureau of Economic Research:
Working Paper Series .

Deaton, A. and A. Heston (2009). Understanding ppps and ppp-based national accounts.
American Economic Journal: Macroeconomics .

Fu, H. and H. Nada (2020). New results from the international comparison program shed
light on the size of the global economy. The World Bank Blog .

Gilboa, S. and V. Mitchell (2020). The role of culture and purchasing power parity in shaping
mall-shoppers’ profiles. Journal of Retailing and Consumer Services .

Pakko, M. R. and P. S. Pollard (2003). Burgernomics: A big mac guide to purchasing power
parity. The Federal Reserve Bank of St. Louis .

Polidoro, F., G. Riccardo, L. C. Rosanna, M. Stefano, and R. Francesca (2015). Web scraping
techniques to collect data on consumer electronics and airfares for italian hicp compilation.
Statistical Jounral of the IAOS .

Powell, B., G. Nason, D. Elliott, M. Mayhew, J. Davies, and J. Winton (2018). Tracking and
modelling prices using web-scraped price microdata: towards automated daily consumer
price index forecasting. Journal of the Royal Statistical Society: Statistics in Society Series
A.

Taylor, A. and M. Taylor (2004). The purchasing power parity debate. Journal of Economic
Perspectives .

Wang, L. and R. Wright (2016). Are prices sticky and does it matter?

12

A Google Shopping API Code

#REQUIRES: pip install google−search−results

import pandas as pd

from serpapi import GoogleSearch

import time

Set a l is t of locations for the Google to specify when seeking results
This l is t causes the SerpAPI platform to iterate through different location urls
locations = [’USA’,’Japan’,’Germany’,’Sweden’,’Italy’,

’Paraguay’,’Brazil’,’Colombia’,’Guatemala’,’Mexico’,

’Nigeria’,’Kenya’,’Egypt’,’Morocco’,

’Indonesia’,’Bangladesh’,’India’,’Kazakhstan’,

’Israel’,’Oman’,’Russia’]

Set a l is t of queries for the search−bar to run through
queries = [’basmati rice 1 kg’,’loaf bread’,’coca cola 1 liter’,

’intel i7 10850k’,’steel shovel round point’]

Set an empty dataframe to store observations
dfg = pd.DataFrame()

Begin for−loop
for location in locations:

for query in queries:

Set an empty temporary dataframe to store observations
df_temp = pd.DataFrame()

Set parameters for accessing the Google SerpAPI platform, running through
each query and location in their respective l ists
params = {

"engine": "google",

"q": query,

"location_requested": location,

"tbm": "shop",

The API code is stored here − user needs a personal API code
"api_key": "API_CODE"

}

#Run the API, for each query store the JSON results in a dictionary and keep

13

the observation−section of the results
search = GoogleSearch(params)

results = search.get_dict()

shopping_results = results[’shopping_results’]

Set the temporary dataframe to be the results from the API queries , and
add today’s date as a column vector
df_temp = pd.DataFrame.from_dict(shopping_results)

df_temp[’query’] = query

df_temp[’location’] = location

df_temp[’date’] = pd.Timestamp("today").strftime("%m/%d/%Y")

Add the conditional statement to f i l l the original dataframe if empty, or
append if there are already observations contained in the dataframe.
if dfg.empty == True:

dfg = df_temp

elif dfg.empty == False:

dfg = dfg.append(df_temp, ignore_index=True)

dfg[’category’] = dfg[’query’]

dfg.loc[(dfg.category == ’basmati rice 1 lb’), ’category’] = ’foods’

dfg.loc[(dfg.category == ’loaf bread’), ’category’] = ’foods’

dfg.loc[(dfg.category == ’coca cola 1 liter’), ’category’] = ’drinks’

dfg.loc[(dfg.category == ’intel i7 10850k’), ’category’] = ’electronics’

dfg.loc[(dfg.category == ’steel shovel round point’), ’category’] = ’home improvement’

Set today’s date and save the dataframe as a CSV and XLSX fi le using today’s date.
todaysdate = time.strftime("%d−%m−%Y")
dfg.to_csv(r’~\World Bank\Data\Google Data\CSV Files\PPP data google api ’ +

todaysdate + ’.csv’, index = False)

dfg.to_excel(r’~\tluen\World Bank\Data\Google Data\Excel Files\PPP data google api ’

+ todaysdate + ’.xlsx’, index = False)

B Walmart (Abbreviated) API Code

#REQUIRES: pip install google−search−results

import pandas as pd

from serpapi import GoogleSearch

import time

Set a l is t of queries for the search−bar to run through
queries = [’basmati rice 1 lb’,’loaf bread’,’coca cola 1 liter’,

14

’milk’,’oreos’,’soup’,’pot pie’,’creamer’,’1 pound coffee’,

’intel i7 10850k’,’steel shovel round point’, ’power drill’,

’3 shelf bookcase’,’chair’,’desk’,’barbie’,’settlers of catan’,

’paper towels’]

Set an empty dataframe to store observations
dfw = pd.DataFrame()

Begin for−loop
for query in queries:

Set an empty temporary dataframe to store observations
dfw_temp = pd.DataFrame()

Set parameters for accessing the Google SerpAPI platform, running through each
query in the queries l is t
params = {

"engine": "walmart",

"query": query,

The API code is stored here − user needs a personal API code
"api_key": "API_CODE"

}

#Run the API, for each query store the JSON results in a dictionary and keep
the observation−section of the results
search = GoogleSearch(params)

results = search.get_dict()

shopping_results = results[’organic_results’]

Set the temporary dataframe to be the results from the API queries , and add
today’s date as a column vector
dfw_temp = pd.DataFrame.from_dict(shopping_results)

dfw_temp_p = pd.json_normalize(dfw_temp[’primary_offer’])

dfw_temp = pd.concat([dfw_temp ,dfw_temp_p], axis=1)

dfw_temp[’date’] = pd.Timestamp("today").strftime("%m/%d/%Y")

dfw_temp[’query’] = query

Add the conditional statement to f i l l the original dataframe if empty, or
append if there are already observations contained in the dataframe.
if dfw.empty == True:

dfw = dfw_temp

elif dfw.empty == False:

dfw = dfw.append(dfw_temp, ignore_index=True)

15

dfw[’category’] = dfw[’query’]

dfw.loc[(dfw.category == ’basmati rice 1 lb’), ’category’] = ’foods’

dfw.loc[(dfw.category == ’loaf bread’), ’category’] = ’foods’

dfw.loc[(dfw.category == ’oreos’), ’category’] = ’foods’

dfw.loc[(dfw.category == ’soup’), ’category’] = ’foods’

dfw.loc[(dfw.category == ’pot pie’), ’category’] = ’foods’

dfw.loc[(dfw.category == ’coca cola 1 liter’), ’category’] = ’drinks’

dfw.loc[(dfw.category == ’milk’), ’category’] = ’drinks’

dfw.loc[(dfw.category == ’creamer’), ’category’] = ’drinks’

dfw.loc[(dfw.category == ’1 pound coffee’), ’category’] = ’drinks’

dfw.loc[(dfw.category == ’steel shovel round point’), ’category’] = ’home improvement’

dfw.loc[(dfw.category == ’power drill’), ’category’] = ’home improvement’

dfw.loc[(dfw.category == ’3 shelf bookcase’), ’category’] = ’home and furniture’

dfw.loc[(dfw.category == ’chair’), ’category’] = ’home and furniture’

dfw.loc[(dfw.category == ’desk’), ’category’] = ’home and furniture’

dfw.loc[(dfw.category == ’barbie’), ’category’] = ’toys and games’

dfw.loc[(dfw.category == ’settlers of catan’), ’category’] = ’toys and games’

dfw.loc[(dfw.category == ’paper towels’), ’category’] = ’dry goods’

dfw.loc[(dfw.category == ’intel i7 10850k’), ’category’] = ’electronics’

Set today’s date and save the dataframe as a CSV and XLSX fi le using today’s date.
todaysdate = time.strftime("%d−%m−%Y")
dfw.to_csv(r’~\World Bank\Data\Walmart Data\CSV Files\PPP data walmart api ’ +

todaysdate + ’.csv’, index = False)

dfw.to_excel(r’~\World Bank\Data\Walmart Data\Excel Files\PPP data walmart api ’ +

todaysdate + ’.xlsx’, index = False)

C Walmart (Expanded) API Code

#REQUIRES: pip install google−search−results

import pandas as pd

from serpapi import GoogleSearch

import time

Set a l is t of queries for the search−bar to run through
queries = [’basmati rice 1 lb’,’loaf bread’,’oreos’,’soup’,’pot pie’,’eggs’,

’top sirloin’, ’chicken breast’,’coca cola 1 liter’,’milk’,’creamer’,

’1 pound coffee’,’apple juice’, ’1 gallon water’,’gatorade’,’red bull’,

’cold brew’,’capri sun’,’steel shovel round point’, ’power drill’,

’rug’,’vinyl flooring’,’caulk’,’hammer’,’3 shelf bookcase’,’chair’,’desk’,

’table’,’washing machine’,’sauce pan’,’spatula’,’toaster’,’kitchen aide’,

’barbie’,’settlers of catan’,’soccer ball’,’lego’,’ticket to ride’,

16

’magic the gathering’, ’bicycle’,’vtech’,’nerf’,’monopoly’,’paper towels’,

’trash bags’, ’plastic utensils’,’toilet paper’,’intel i7 10850k’,

’apple watch’,’chromebook’,’go pro’, ’graphics card’,’1 tb hard drive’,

’airpods pro’,’google nest’,’tshirt’,’shorts’,’pants’, ’sandals’,’jeans’,

’baseball cap’,’ibuprofen’,’acetaminophen’,’bandage’,’thermometer’,

’vitamin d3’,’diapers’,’hardcover book’,’softcover book’,’bluray’,

’nintendo switch’,’playstation’, ’binder’,’notepad’,’pens’,’pencils’,

’scissors’]

Set a l is t of pages for the search−bar to run through
pages = ["1","2"]

Set an empty dataframe to store observations
dfwx = pd.DataFrame()

Begin for−loop

for query in queries:

Set an empty temporary dataframe to store observations
dfw_temp = pd.DataFrame()

Set parameters for accessing the Google SerpAPI platform, running through each
query in the queries l is t
params = {

"engine": "walmart",

"query": query,

The API code is stored here − user needs a personal API code
"api_key": "API_CODE"

}

#Run the API, for each query store the JSON results in a dictionary and keep
the observation−section of the results
search = GoogleSearch(params)

results = search.get_dict()

shopping_results = results[’organic_results’]

Set the temporary dataframe to be the results from the API queries , and add
today’s date as a column vector
dfw_temp = pd.DataFrame.from_dict(shopping_results)

dfw_temp[’query’] = query

dfw_temp[’date’] = pd.Timestamp("today").strftime("%m/%d/%Y")

17

Add the conditional statement to f i l l the original dataframe if empty, or
append if there are already observations contained in the dataframe.
if dfwx.empty == True:

dfwx = dfw_temp

elif dfwx.empty == False:

dfwx = dfwx.append(dfw_temp , ignore_index=True)

Extract prices from ’primary_offer’ dictionary−column
Average min/max/offer price to normalize prices
dfwx = dfwx[dfwx[’primary_offer’].notnull()]

dfwx_p = pd.json_normalize(dfwx[’primary_offer’])

dfwx = pd.concat([dfwx,dfwx_p], axis=1)

dfwx[’avg_price’] = dfwx[[’min_price’,’max_price’,’offer_price’]].mean(axis=1)

Set a category column vector and set categories based on query
dfwx[’category’] = dfwx[’query’]

dfwx.loc[(dfwx.category == ’basmati rice 1 lb’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’loaf bread’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’oreos’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’soup’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’pot pie’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’eggs’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’top sirloin’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’chicken breast’), ’category’] = ’foods’

dfwx.loc[(dfwx.category == ’coca cola 1 liter’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’milk’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’creamer’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’1 pound coffee’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’apple juice’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’1 gallon water’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’gatorade’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’red bull’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’cold brew’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’capri sun’), ’category’] = ’drinks’

dfwx.loc[(dfwx.category == ’steel shovel round point’), ’category’] = ’home improvement’

dfwx.loc[(dfwx.category == ’power drill’), ’category’] = ’home improvement’

dfwx.loc[(dfwx.category == ’rug’), ’category’] = ’home improvement’

dfwx.loc[(dfwx.category == ’vinyl flooring’), ’category’] = ’home improvement’

dfwx.loc[(dfwx.category == ’caulk’), ’category’] = ’home improvement’

dfwx.loc[(dfwx.category == ’hammer’), ’category’] = ’home improvement’

dfwx.loc[(dfwx.category == ’3 shelf bookcase’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’chair’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’desk’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’table’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’washing machine’), ’category’] = ’home and furniture’

18

dfwx.loc[(dfwx.category == ’sauce pan’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’spatula’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’toaster’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’kitchen aide’), ’category’] = ’home and furniture’

dfwx.loc[(dfwx.category == ’barbie’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’settlers of catan’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’soccer ball’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’lego’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’ticket to ride’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’magic the gathering’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’bicycle’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’vtech’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’nerf’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’monopoly’), ’category’] = ’toys and games’

dfwx.loc[(dfwx.category == ’paper towels’), ’category’] = ’dry goods’

dfwx.loc[(dfwx.category == ’paper plates’), ’category’] = ’dry goods’

dfwx.loc[(dfwx.category == ’trash bags’), ’category’] = ’dry goods’

dfwx.loc[(dfwx.category == ’plastic utensils’), ’category’] = ’dry goods’

dfwx.loc[(dfwx.category == ’toilet paper’), ’category’] = ’dry goods’

dfwx.loc[(dfwx.category == ’intel i7 10850k’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’apple watch’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’chromebook’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’go pro’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’graphics card’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’1 tb hard drive’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’airpods pro’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’google nest’), ’category’] = ’electronics’

dfwx.loc[(dfwx.category == ’tshirt’), ’category’] = ’clothing and accessories’

dfwx.loc[(dfwx.category == ’shorts’), ’category’] = ’clothing and accessories’

dfwx.loc[(dfwx.category == ’pants’), ’category’] = ’clothing and accessories’

dfwx.loc[(dfwx.category == ’sandals’), ’category’] = ’clothing and accessories’

dfwx.loc[(dfwx.category == ’jeans’), ’category’] = ’clothing and accessories’

dfwx.loc[(dfwx.category == ’baseball cap’), ’category’] = ’clothing and accessories’

dfwx.loc[(dfwx.category == ’ibuprofen’), ’category’] = ’health’

dfwx.loc[(dfwx.category == ’acetaminophen’), ’category’] = ’health’

dfwx.loc[(dfwx.category == ’bandage’), ’category’] = ’health’

dfwx.loc[(dfwx.category == ’thermometer’), ’category’] = ’health’

dfwx.loc[(dfwx.category == ’vitamin d3’), ’category’] = ’health’

dfwx.loc[(dfwx.category == ’diapers’), ’category’] = ’health’

dfwx.loc[(dfwx.category == ’hardcover book’), ’category’] = ’entertainment’

dfwx.loc[(dfwx.category == ’softcover book’), ’category’] = ’entertainment’

dfwx.loc[(dfwx.category == ’bluray’), ’category’] = ’entertainment’

dfwx.loc[(dfwx.category == ’nintendo switch’), ’category’] = ’entertainment’

dfwx.loc[(dfwx.category == ’playstation’), ’category’] = ’entertainment’

dfwx.loc[(dfwx.category == ’binder’), ’category’] = ’school and office’

19

dfwx.loc[(dfwx.category == ’notepad’), ’category’] = ’school and office’

dfwx.loc[(dfwx.category == ’pens’), ’category’] = ’school and office’

dfwx.loc[(dfwx.category == ’pencils’), ’category’] = ’school and office’

dfwx.loc[(dfwx.category == ’scissors’), ’category’] = ’school and office’

Set today’s date and save the dataframe as a CSV and XLSX fi le using today’s date.
todaysdate = time.strftime("%d−%m−%Y")
dfwx.to_csv(r’~\World Bank\Data\Walmart Data\CSV Files\PPP data walmart api ’ +

todaysdate + ’ expanded.csv’, index = False)

dfwx.to_excel(r’~\World Bank\Data\Walmart Data\Excel Files\PPP data walmart api ’ +

todaysdate + ’ expanded.xlsx’, index = False)

D Concatenation Codes

Google Shopping: concatenate new data to old ful l dataset

df_old_csv_gs = pd.read_csv (r’~\World Bank\Data\Google Data\google_data_full.csv’)

df_new_gs = pd.concat([df_old_csv_gs , dfg])

df_new_gs.to_csv(r’~\World Bank\Data\Google Data\google_data_full.csv’, index = False)

df_new_gs.to_excel(r’~\World Bank\Data\Google Data\google_data_full.xlsx’, index = False)

Walmart Abbreviated: concatenate new data to old ful l dataset

df_old_csv_abbr = pd.read_csv (r’~\World Bank\Data\Walmart Data\walmart_abbr_full.csv’)

df_new_abbr = pd.concat([df_old_csv_abbr , dfw])

df_new_abbr.to_csv(r’~\World Bank\Data\Walmart Data\walmart_abbr_full.csv’, index = False)

df_new_abbr.to_excel(r’~\World Bank\Data\Walmart Data\walmart_abbr_full.xlsx’, index = False)

Walmart Expanded: concatenate new data to old ful l dataset

df_old_csv_exp = pd.read_csv (r’~\World Bank\Data\Walmart Data\walmart_exp_full.csv’)

df_new_exp = pd.concat([df_old_csv_exp , dfwx])

df_new_exp.to_csv(r’~\World Bank\Data\Walmart Data\walmart_exp_full.csv’, index = False)

df_new_exp.to_excel(r’~\World Bank\Data\Walmart Data\walmart_exp_full.xlsx’, index = False)

E Sorting, Lagging, Price Changes, and Finding Critical
Observations

import pandas as pd

Import the current ful l dataset

20

df_new_exp = pd.read_csv (r’~\World Bank\Data\Walmart Data\walmart_exp_full.csv’)

Prepare a column for lag−prices
df_new_exp[’lag_avg_price’] = df_new_exp[’avg_price’]

dfx = df_new_exp[df_new_exp.duplicated(’product_id’, keep=False)]

Group products by product id and set definitions to lag the average prices
grouped_df = dfx.groupby(["product_id"])

def lag_by_group(key, value_df):

df = value_df.assign(group = key)

return (df.sort_values(by=["date"], ascending=True)

.set_index(["date"])

.lag_avg_price.shift(1)

)

def sort_by_group(key, value_df):

df = value_df.assign(group = key)

return (df.sort_values(by=["date"], ascending=True)

.set_index(["date"])

)

Create a column of grouped, lag prices
dflist = [lag_by_group(g, grouped_df.get_group(g)) for g in grouped_df.groups.keys()]

new_df = pd.concat(dflist, axis=0).reset_index()

Sort the dataframe and concatenate the lag prices
dfglist = [sort_by_group(g, grouped_df.get_group(g)) for g in grouped_df.groups.keys()]

new_dfg = pd.concat(dfglist, axis=0).reset_index()

new_dfg = new_dfg.drop([’lag_avg_price’], axis=1, errors=’ignore’)

sorted_lagged_df = pd.concat([new_dfg,new_df],axis=1).reset_index()

Create a column of absolute change in price , and a column of percentage change in price
sorted_lagged_df[’price_change’] = sorted_lagged_df[’avg_price’] − sorted_lagged_df[’lag_avg_price’]

sorted_lagged_df[’prct_change’] = (sorted_lagged_df[’price_change’]/sorted_lagged_df[’avg_price’])∗100

Find critical observations (extrema with price changes greater than 100\% in either direction)
critical_obs_hi = sorted_lagged_df.loc[(sorted_lagged_df[’prct_change’] >= 100.0)]

critical_obs_lo = sorted_lagged_df.loc[(sorted_lagged_df[’prct_change’] <= −100.0)]

F R Code to Isolate Price Data

data = read.csv("~/World Bank/Data/walmart_exp_full.csv")

21

min_price_yes = grep(’min_price’,data$primary_offer)

max_price_yes = grep(’max_price’,data$primary_offer)

offer_price_yes = grep(’offer_price’,data$primary_offer)

#get prices for offer price items
split_offer = strsplit(data$primary_offer[offer_price_yes], ’[[:space:]]’)

price = NULL

for (i in 1:length(split_offer)){

price[i] = split_offer[[i]][4]

}

offer_prices = price

data$price = 0

data$price[offer_price_yes] = as.numeric(gsub(’\\,’, ’’, offer_prices))

#create average prices
split_min_max = strsplit(data$primary_offer[min_price_yes], ’[[:space:]]’)

split_min_max

price_min = NULL

price_max = NULL

for (i in 1:length(split_min_max)){

price_min[i] = split_min_max[[i]][4]

price_max[i] = split_min_max[[i]][6]

}

price_min_new = as.numeric(gsub(’\\,’, ’’, price_min))

price_min_new

price_max_new = as.numeric(gsub(’[\\,|\\}]’, ’’, price_max))

price_max_new

imputed_price = price_max_new+price_min_new/2

data$price[min_price_yes] = imputed_price

write.csv(data, ’C:/Users/ian/Downloads/World Bank/World Bank/Data/walmart_exp_full_PRICES.csv’)

length(unique(data$us_item_id))

22

G Code to Create Figure 3

library(readxl)

library(dplyr)

library(ggplot2)

data = read_excel("~/World Bank/Data/walmart_exp_full.xlsx")

avg_prices = tapply(data$avg_price , data$date , mean, na.rm=T)

avg_prices = avg_prices[!is.na(avg_prices)]

c = NULL

for (i in 1:length(avg_prices)){

c[i] = (avg_prices[i+1] − avg_prices[i])/avg_prices[i]

}

c = c[2:(length(c)−1)]
plot(density(c))

newdata = select(data, product_id , category, date, price, title)

ordered_dat = newdata[order(newdata$product_id),]

d = density(c)

p = ggplot(data.frame(x=d$x,y=d$y), aes(x=x,y=y))+

geom_area(fill=’cyan’, color=’blue’, alpha=.4, size=1)+

geom_vline(xintercept=−.007, color=’orange’, size=1, linetype=’dashed’) +
theme_bw() +

xlab(’Price Change (%)’) +

ylab(’Density’) +

labs(title=’Distribution of Online Price Changes’) +

theme(plot.title = element_text(size=15, face="bold",

margin = margin(10, 0, 10, 0))) +

scale_x_continuous(breaks= round(seq(−.25, .45, by=.05),2), labels=c(seq(−25, 45, by=5))) +
theme(text = element_text(size=12))

png(’C:/Users/ian/Downloads/price_dist.png’)

print(p)

dev.off()

H Code to Create Figure 4

library(haven)

library(ggplot2)

23

data = read_dta(’~/Cavallo_ScrapedData_Replication/REPLICATION/RAWDATA/usa2.dta’)

data$date = as.Date(data$date)

trimmed_data = data[data$date >= "2008−05−01" & data$date <= "2008−05−14",]
avg_prices = tapply(trimmed_data$price , trimmed_data$date , mean, na.rm=T)

c = NULL

for (i in 1:length(avg_prices)){

c[i] = (avg_prices[i+1] − avg_prices[i])/avg_prices[i]

}

c = c[2:(length(c)−1)]

d = density(c)

p = ggplot(data.frame(x=d$x,y=d$y), aes(x=x,y=y))+

geom_area(fill=’cyan’, color=’blue’, alpha=.4, size=1)+

geom_vline(xintercept=mean(d$x), color=’orange’, size=1, linetype=’dashed’) +

theme_bw() +

xlab(’Price Change (%)’) +

ylab(’Density’) +

labs(title=’Distribution of Online Price Changes’) +

theme(plot.title = element_text(size=15, face="bold",

margin = margin(10, 0, 10, 0))) +

scale_x_continuous(breaks = c(seq(−.01, .01, by=.005)), labels=c(seq(−1, 1, by=.5))) +
theme(text = element_text(size=12))

png(’C:/Users/ian/Downloads/sub_dist.png’)

print(p)

dev.off()

24

Figure 1: Cavallo’s Price Distribution

Table 5: Database Description (Table 2 of Cavallo (2015))

Google Shopping Walmart (abbreviated) Walmart (expanded)

Queriesa 5 18 78
Locationsb 21 1 1
Avg. Daily Observations 2100 678 2303

a queries are strings used as search parameters for items (ie. the string typed into a search-bar)
b locations are strings used to reference a geographical server from which the string takes place

25

Figure 2: Cavallo Figure 1

Figure 3: Price Distribution: Google SERP API

26

Figure 4: Price Distribution: 14 day Sub Sample (Cavallo Data)

Figure 5: K-Density Plot of Walmart Data Price Changes by Category-Average

27

Figure 6: K-Density Plot Comparison of Walmart and Cavallo Data over Two-Week Period

Figure 7: K-Density Plot of Walmart Data Price Changes by Individual Category

28

Figure 8: K-Density Plot of Walmart Data by Duration

Table 6: Database Description (Table 2 of Cavallo (2015)) with New Walmart Data Column

US Argentina Brazil Chile Columbia Walmart

Retailersa 4 1 1 1 1 1
Observations (millions)b 28 11 10 10 4 0.03
Products (thousands)c 172 28 22 24 9 4
Daysd 865 1,041 1,026 1,024 992 18
Initial Datee 03/08 10/07 10/07 10/07 11/07 04/28/21
Final Datef 08/10 08/10 08/10 08/10 08/10 current
Categoriesg 49 74 72 72 59 11
URLsh 16,188 993 322 292 123 6,887
Total missing observations (%)i 37 32 26 33 22 0.04

a number of retailers from which data is gathered
b total number of observations of price and metadata
c total number of unique products
d total number of days for which data was collected
e initial date of data collection
f final date of data collection
g total number of product categories
h total number of unique product page urls
i total percentage of products for which price data is missing

29

	Introduction
	Literature Review

	Data
	Problem description
	Cavallo Replication
	Difficulties
	Overview of Solutions
	Data Collection Method

	Results
	Depth of Raw API Data

	Discussion and Conclusion
	Google Shopping API Code
	Walmart (Abbreviated) API Code
	Walmart (Expanded) API Code
	Concatenation Codes
	Sorting, Lagging, Price Changes, and Finding Critical Observations
	R Code to Isolate Price Data
	Code to Create Figure 3
	Code to Create Figure 4

